Karen Peeters
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karen Peeters.
Current Medicinal Chemistry | 2010
Laura Noé; Karen Peeters; Benedetta Izzi; C. Van Geet; Kathleen Freson
Platelets are indispensable for primary haemostasis, but their function needs to be tightly regulated to prevent excessive platelet activity, possibly leading to atherothrombotic events. An important mediator of the platelet activity is cyclic AMP (cAMP), which inhibits platelet aggregation. Intracellular cAMP levels are regulated via the Gs and Gi alpha subunits of heterotrimeric G proteins, which couple to adenylyl cyclase to respectively stimulate or inhibit cAMP production. Binding of a ligand to its G protein-coupled seven-transmembrane receptor activates these G proteins. In this review, we discuss a Gs-coupled receptor on platelets, VPAC1, and 2 important Gi-coupled receptors, the ADP receptor P2Y(12) and the prostaglandin E(2) receptor EP3. The regulation of platelet cAMP levels at the level of the receptors themselves or the G proteins coupled to them is analyzed. Alterations in Gsα and Giα function are associated with altered platelet reactivity. An increase in Gs function, or alternatively a defective Gi signaling, can be a risk factor for bleeding, while a loss of Gs function can result in a prothrombotic state. Regulator of G protein signaling (RGS) proteins accelerate the rate of inactivation of G protein-mediated signaling. One of the RGS proteins, RGS2, inhibits Gs signaling by interacting directly with adenylyl cyclase. The thienopyridine class of antiplatelet agents is based on cAMP-mediated regulation of platelet function through modification of the P2Y(12) receptor. Clopidogrel and some other novel cAMP regulators are discussed. Secondly, we review the use of prostacyclin derivatives to treat pulmonary arterial hypertension.
Molecular & Cellular Proteomics | 2012
Michela Di Michele; Karen Peeters; Serena Loyen; Chantel Thys; Etienne Waelkens; Lutgart Overbergh; Marc Hoylaerts; Christel Van Geet; Kathleen Freson
We previously showed that the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptor VPAC1 are negative regulators of megakaryopoiesis and platelet function, but their downstream signaling pathway that inhibits this process still remained unknown. A combined proteomic, transcriptomic, and bioinformatic approach was here used to elucidate the molecular mechanisms underlying PACAP signaling via VPAC1 in megakaryocytes. Two-dimensional difference gel electrophoresis and tandem MS were applied to detect differentially expressed proteins in megakaryocytic CHRF cells stimulated with PACAP. The majority of the 120 proteins modulated by PACAP belong to the class of “cell cycle and apoptosis” proteins. The up- or down-regulated expression of some proteins was confirmed by immunoblot and immunohistochemical analysis. A meta-analysis of our data and 12 other published studies was performed to evaluate signaling pathways involved in different cellular models of PACAP response. From 2384 differentially expressed genes/proteins, 83 were modulated by PACAP in at least three independent studies and Ingenuity Pathway Analysis further identified apoptosis as the highest scored network with NF-κB as a key-player. PACAP inhibited serum depletion-induced apoptosis of CHRF cells via VPAC1 stimulation. In addition, PACAP switched on NF-κB dependent gene expression since higher nuclear levels of the active NF-κB p50/p65 heterodimer were found in CHRF cells treated with PACAP. Finally, a quantitative real time PCR apoptosis array was used to study RNA from in vitro differentiated megakaryocytes from a PACAP overexpressing patient, leading to the identification of 15 apoptotic genes with a 4-fold change in expression and Ingenuity Pathway Analysis again revealed NF-κB as the central player. In conclusion, our findings suggest that PACAP interferes with the regulation of apoptosis in megakaryocytes, probably via stimulation of the NF-κB pathway.
British Journal of Haematology | 2010
Karen Peeters; Serena Loyen; Soetkin Van kerckhoven; Katinka Stoffels; Marc Hoylaerts; Christel Van Geet; Kathleen Freson
Megakaryocytes and platelets express the stimulatory G protein (Gs)‐coupled VPAC1 receptor, for which the pituitary adenylyl cyclase‐activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are agonists. The neuropeptide PACAP and VPAC1 were previously found to negatively regulate megakaryopoiesis, and inhibition of their physiological pathway was found to have a thrombopoietic effect in conditions where megakaryo‐poiesis and thrombopoiesis were impaired, such as chemotherapy‐induced thrombocytopenia and congenital thrombocytopenia. The present study explored the thrombopoietic effect of VPAC1 inhibition in a murine model of syngeneic bone marrow transplantation (BMT) and in passive immune thrombocytopenia. Treatment of donor mice with a neutralizing anti‐VPAC1 antibody stimulated the initial, most critical recovery of the platelets in irradiated mice. In the passive immune thrombocytopenia model, we observed a thrombopoietic effect, resulting in a less severe platelet drop after induction of their removal in the spleen by an anti‐platelet antibody. We concluded that inhibition of the physiological PACAP/VPAC1 pathway could stimulate in vivo megakaryopoiesis. This inhibition can be applied to attenuate thrombocytopenia in conditions where platelets are destroyed as the major pathogenetic mechanism, e.g. immune thrombocytopenia purpura, or need to be produced de novo, e.g. after irradiation and BMT.
Pharmaceutics | 2011
Karen Peeters; Martijn J. Wilmer; Joost Schoeber; Dorien Reijnders; Lambertus P. van den Heuvel; Rosalinde Masereeuw; Elena Levtchenko
P-glycoprotein (P-gp) is an ATP-dependent transporter localized at the apical membrane of the kidney proximal tubules, which plays a role in the efflux of cationic and amphipathic endogenous waste products and xenobiotics, such as drugs, into urine. Studies in mice deficient in P-gp showed generalized proximal tubular dysfunction similar to the phenotype of patients with cystinosis, an autosomal recessive disorder caused by mutations in the lysosomal cystine transporter cystinosin. Renal disease in cystinosis is characterized by generalized dysfunction of the apical proximal tubular influx transporters (so-called renal Fanconi syndrome) developing during infancy and gradually progressing towards end-stage renal disease before the 10th birthday in the majority of patients that are not treated with the cystine-depleting drug cysteamine. Here, we investigated whether the proximal tubular efflux transporter P-gp is affected in cystinosis and whether this might contribute to the development of renal Fanconi syndrome. We used conditionally immortalized (ci) proximal tubular epithelial cells (ciPTEC) derived from cystinotic patients and healthy volunteers. P-gp-mediated transport was measured by using the P-gp substrate calcein-AM in the presence and absence of the P-gp-inhibitor PSC833. P-gp activity was normal in cystinotic cells as compared to controls. Additionally, the effect of cysteamine on P-gp transport activity and phosphate uptake was determined; demonstrating increased P-gp activity in cystinotic cells, and further decrease of proximal tubular phosphate uptake. This observation is compatible with the persistence of renal Fanconi syndrome in vivo under cysteamine therapy. In summary, P-gp expression and activity are normal in cystinotic ciPTEC, indicating that P-gp dysfunction is not involved in the pathogenesis of cystinosis.
Blood | 2008
Kathleen Freson; Karen Peeters; Rita Vos; Christine Wittevrongel; Chantal Thys; Marc Hoylaerts; Jos Vermylen; Chris Van Geet
Drug Discovery Today | 2008
Karen Peeters; Jean-Marie Stassen; Desire Collen; Chris Van Geet; Kathleen Freson
Annals of Vascular Surgery | 2015
Karen Peeters; Sam Heye; Liesbeth Dewever; Kathleen Claes; Inge Fourneau
Archive | 2013
Jos Vermylen; Chris Van Geet; Kathleen Freson; Karen Peeters; Rita Vos; Christine Wittevrongel; Chantal Thys; Marc Hoylaerts
Archive | 2013
Karen Peeters; Sam Heye; Liesbeth De Wever; Kathleen Claes; Inge Fourneau
Pediatric Nephrology | 2011
Benedicte Eneman; Karen Peeters; Bert van den Heuvel; Evelyne Lerut; Elena Levtchenko