Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen S. Aboody is active.

Publication


Featured researches published by Karen S. Aboody.


Nature Reviews Cancer | 2005

The origin of the cancer stem cell: current controversies and new insights

Rolf Bjerkvig; Berit B. Tysnes; Karen S. Aboody; Joseph Najbauer; A.J.A. Terzis

Most tumours are derived from a single cell that is transformed into a cancer-initiating cell (cancer stem cell) that has the capacity to proliferate and form tumours in vivo. However, the origin of the cancer stem cell remains elusive. Interestingly, during development and tissue repair the fusion of genetic and cytoplasmic material between cells of different origins is an important physiological process. Such cell fusion and horizontal gene-transfer events have also been linked to several fundamental features of cancer and could be important in the development of the cancer stem cell.


Gene Therapy | 2008

Stem and progenitor cell-mediated tumor selective gene therapy

Karen S. Aboody; Joseph Najbauer; Mary K. Danks

The poor prognosis for patients with aggressive or metastatic tumors and the toxic side effects of currently available treatments necessitate the development of more effective tumor-selective therapies. Stem/progenitor cells display inherent tumor-tropic properties that can be exploited for targeted delivery of anticancer genes to invasive and metastatic tumors. Therapeutic genes that have been inserted into stem cells and delivered to tumors with high selectivity include prodrug-activating enzymes (cytosine deaminase, carboxylesterase, thymidine kinase), interleukins (IL-2, IL-4, IL-12, IL-23), interferon-β, apoptosis-promoting genes (tumor necrosis factor-related apoptosis-inducing ligand) and metalloproteinases (PEX). We and others have demonstrated that neural and mesenchymal stem cells can deliver therapeutic genes to elicit a significant antitumor response in animal models of intracranial glioma, medulloblastoma, melanoma brain metastasis, disseminated neuroblastoma and breast cancer lung metastasis. Most studies reported reduction in tumor volume (up to 90%) and increased survival of tumor-bearing animals. Complete cures have also been achieved (90% disease-free survival for >1 year of mice bearing disseminated neuroblastoma tumors). As we learn more about the biology of stem cells and the molecular mechanisms that mediate their tumor-tropism and we identify efficacious gene products for specific tumor types, the clinical utility of cell-based delivery strategies becomes increasingly evident.


Human Gene Therapy | 2003

Intravascular Delivery of Neural Stem Cell Lines to Target Intracranial and Extracranial Tumors of Neural and Non-Neural Origin

Alice B. Brown; Wendy Yang; Nils Ole Schmidt; Rona S. Carroll; Kim K. Leishear; Nikolai G. Rainov; Peter McL. Black; Xandra O. Breakefield; Karen S. Aboody

The remarkable migratory and tumor-tropic capacities of neural stem cells (NSCs and/or neuroprogenitor cells) represent a potentially powerful approach to the treatment of invasive brain tumors, such as malignant gliomas. We have previously shown that whether implanted directly into or at distant sites from an experimental intracranial glioma, NSCs distributed efficiently throughout the main tumor mass and also tracked advancing tumor cells, while stably expressing a reporter transgene. As therapeutic proof-of-concept, NSCs genetically modified to produce the prodrug activating enzyme cytosine deaminase (CD), effected an 80% reduction in the resultant tumor mass, when tumor animals were treated with the systemic prodrug, 5-fluorocytosine. We now extend our findings of the tumor-tropic properties of NSCs (using a well-characterized, clonal NSC line C17.2), by investigating their capacity to target both intracranial and extracranial tumors, when administered into the peripheral vasculature. We furthermore demonstrate their capacity to target extracranial non-neural tumors such as prostate cancer and malignant melanoma. Well-characterized NSC lines (lacZ and/or CD-positive) were injected into the tail vein of adult nude mice with established experimental intracranial and/or subcutaneous flank tumors of neural and non-neural origin. The time course and distribution of NSCs within the tumor and internal organs was assessed in various models. Resulting data suggest that NSCs can localize to various tumor sites when injected via the peripheral vasculature, with little accumulation in normal tissues. Our findings suggest the novel use of intravascularly administered NSCs as an effective delivery vehicle to target and disseminate therapeutic agents to invasive tumors of neural and nonneural origin, both within and outside of the brain.


Clinical Cancer Research | 2006

Human Neural Stem Cells Target Experimental Intracranial Medulloblastoma and Deliver a Therapeutic Gene Leading to Tumor Regression

Seung-Ki Kim; Seung U. Kim; In Ho Park; Jung Hee Bang; Karen S. Aboody; Kyu-Chang Wang; Byung-Kyu Cho; Manho Kim; Lata G. Menon; Peter McL. Black; Rona S. Carroll

Purpose: Medulloblastoma, a malignant pediatric brain tumor, is incurable in about one third of patients despite multimodal treatments. In addition, current therapies can lead to long-term disabilities. Based on studies of the extensive tropism of neural stem cells (NSC) toward malignant gliomas and the secretion of growth factors common to glioma and medulloblastoma, we hypothesized that NSCs could target medulloblastoma and be used as a cellular therapeutic delivery system. Experimental Design: The migratory ability of HB1.F3 cells (an immortalized, clonal human NSC line) to medulloblastoma was studied both in vitro and in vivo. As proof-of-concept, we used HB1.F3 cells engineered to secrete the prodrug activating enzyme cytosine deaminase. We investigated the potential of human NSCs to deliver a therapeutic gene and reduce tumor growth. Results: The migratory capacity of HB1.F3 cells was confirmed by an in vitro migration assay, and corroborated in vivo by injecting chloromethylbenzamido-Dil–labeled HB1.F3 cells into the hemisphere contralateral to established medulloblastoma in nude mice. In vitro studies showed the therapeutic efficacy of HB1.F3-CD on Daoy cells in coculture experiments. In vitro therapeutic studies were conducted in which animals bearing intracranial medulloblastoma were injected ipsilaterally with HB1.F3-CD cells followed by systemic 5-flourocytosine treatment. Histologic analyses showed that human NSCs migrate to the tumor bed and its boundary, resulting in a 76% reduction of tumor volume in the treatment group (P < 0.01). Conclusion: These studies show for the first time the potential of human NSCs as an effective delivery system to target and disseminate therapeutic agents to medulloblastoma.


Gene Therapy | 2002

Global gene and cell replacement strategies via stem cells

Kook In Park; Jitka Ourednik; Vaclav Ourednik; Rosanne M. Taylor; Karen S. Aboody; Kurtis I. Auguste; Mahesh Lachyankar; D. E. Redmond; Evan Y. Snyder

The inherent biology of neural stem cells (NSCs) endows them with capabilities that not only circumvent many of the limitations of other gene transfer vehicles, but that enable a variety of novel therapeutic strategies heretofore regarded as beyond the purview of neural transplantation. Most neurodegenerative diseases are characterized not by discrete, focal abnormalities but rather by extensive, multifocal, or even global neuropathology. Such widely disseminated lesions have not conventionally been regarded as amenable to neural transplantation. However, the ability of NSCs to engraft diffusely and become integral members of structures throughout the host CNS, while also expressing therapeutic molecules, may permit these cells to address that challenge. Intriguingly, while NSCs can be readily engineered to express specified foreign genes, other intrinsic factors appear to emanate spontaneously from NSCs and, in the context of reciprocal donor–host signaling, seem to be capable of neuroprotective and/or neuroregenerative functions. Stem cells additionally have the appealing ability to ‘home in’ on pathology, even over great distances. Such observations help to advance the idea that NSCs – as a prototype for stem cells from other solid organs – might aid in reconstructing the molecular and cellular milieu of maldeveloped or damaged organs.


Neuron | 2011

Translating Stem Cell Studies to the Clinic for CNS Repair: Current State of the Art and the Need for a Rosetta Stone

Karen S. Aboody; Alexandra Capela; Nilofar Niazi; Jeffrey H. Stern; Sally Temple

Since their discovery twenty years ago and prospective isolation a decade later, neural stem cells (NSCs), their progenitors, and differentiated cell derivatives along with other stem-cell based strategies have advanced steadily toward clinical trials, spurred by the immense need to find reparative therapeutics for central nervous system (CNS) diseases and injury. Current phase I/II trials using stem cells in the CNS are the vanguard for the widely anticipated next generation of regenerative therapies and as such are pioneering the stem cell therapy process. While translation has typically been the purview of industry, academic researchers are increasingly driven to bring their findings toward treatments and face challenges in knowledge gap and resource access that are accentuated by the unique financial, manufacturing, scientific, and regulatory aspects of cell therapy. Solutions are envisioned that both address the significant unmet medical need and lead to increased funding for basic and translational research.


Neuro-oncology | 2006

Targeting of melanoma brain metastases using engineered neural stem/progenitor cells

Karen S. Aboody; Joseph Najbauer; Nils Ole Schmidt; Wendy Yang; Julian K. Wu; Yuzheng Zhuge; Wojciech Przylecki; Rona S. Carroll; Peter McL. Black; George Perides

Brain metastases are an increasingly frequent and serious clinical problem for cancer patients, especially those with advanced melanoma. Given the extensive tropism of neural stem/progenitor cells (NSPCs) for pathological areas in the central nervous system, we expanded investigations to determine whether NSPCs could also target multiple sites of brain metastases in a syngeneic experimental melanoma model. Using cytosine deaminase-expressing NSPCs (CD-NSPCs) and systemic 5-fluorocytosine (5-FC) pro-drug administration, we explored their potential as a cell-based targeted drug delivery system to disseminated brain metastases. Our results indicate a strong tropism of NSPCs for intracerebral melanoma metastases. Furthermore, in our therapeutic paradigm, animals with established melanoma brain metastasis received intracranial implantation of CD-NSPCs followed by systemic 5-FC treatment, resulting in a significant (71%) reduction in tumor burden. These data provide proof of principle for the use of NSPCs for targeted delivery of therapeutic gene products to melanoma brain metastases.


Molecular Cancer Research | 2008

Neural stem cell tropism to glioma: critical role of tumor hypoxia.

Donghong Zhao; Joseph Najbauer; Elizabeth Garcia; Marianne Z. Metz; Margarita Gutova; Carlotta A. Glackin; Seung U. Kim; Karen S. Aboody

Hypoxia is a critical aspect of the microenvironment in glioma and generally signifies unfavorable clinical outcome. Effective targeting of hypoxic areas in gliomas remains a significant therapeutic challenge. New therapeutic platforms using neural stem cells (NSC) for tumor-targeted drug delivery show promise in treatment of cancers that are refractory to traditional therapies. However, the molecular mechanisms of NSC targeting to hypoxic tumor areas are not well understood. Therefore, we investigated the role of hypoxia in directed migration of NSCs to glioma and identified the specific signaling molecules involved. Our data showed that hypoxia caused increased migration of human HB1.F3 NSCs to U251 human glioma-conditioned medium in vitro. In HB1.F3 NSCs, hypoxia led to up-regulation of CXCR4, urokinase-type plasminogen activator receptor (uPAR), vascular endothelial growth factor receptor 2 (VEGFR2), and c-Met receptors. Function-inhibiting antibodies to these receptors inhibited the migration of HB1.F3 cells to glioma-conditioned medium. Small interfering RNA knockdown of hypoxia-inducible factor-1α in glioma cells blocked the hypoxia-induced migration of NSCs, which was due to decreased expression of stromal cell–derived factor-1 (SDF-1), uPA, and VEGF in glioma cells. Our in vivo data provided direct evidence that NSCs preferentially distributed to hypoxic areas inside intracranial glioma xenografts, as detected by pimonidazole hypoxia probe, as well as to the tumor edge, and that both areas displayed high SDF-1 expression. These observations indicate that hypoxia is a key factor in determining NSC tropism to glioma and that SDF-1/CXCR4, uPA/uPAR, VEGF/VEGFR2, and hepatocyte growth factor/c-Met signaling pathways mediate increased NSC-to-glioma tropism under hypoxia. These results have significant implications for development of stem cell–mediated tumor-selective gene therapies. (Mol Cancer Res 2008;6(12):1819–29)


Cancer Research | 2007

Tumor-Targeted Enzyme/Prodrug Therapy Mediates Long-term Disease-Free Survival of Mice Bearing Disseminated Neuroblastoma

Mary K. Danks; K. Jin Yoon; Rebecca A. Bush; Joanna S. Remack; Monika Wierdl; Lyudmila Tsurkan; Seung U. Kim; Elizabeth Garcia; Marianne Z. Metz; Joseph Najbauer; Philip M. Potter; Karen S. Aboody

Neural stem cells and progenitor cells migrate selectively to tumor loci in vivo. We exploited the tumor-tropic properties of HB1.F3.C1 cells, an immortalized cell line derived from human fetal telencephalon, to deliver the cDNA encoding a secreted form of rabbit carboxylesterase (rCE) to disseminated neuroblastoma tumors in mice. This enzyme activates the prodrug CPT-11 more efficiently than do human enzymes. Mice bearing multiple tumors were treated with rCE-expressing HB1.F3.C1 cells and schedules of administration of CPT-11 that produced levels of active drug (SN-38) tolerated by patients. Both HB1.F3.C1 cells and CPT-11 were given i.v. None of the untreated mice and 30% of mice that received only CPT-11 survived long term. In contrast, 90% of mice treated with rCE-expressing HB1.F3.C1 cells and 15 mg/kg CPT-11 survived for 1 year without detectable tumors. Plasma carboxylesterase activity and SN-38 levels in mice receiving both rCE-expressing HB1.F3.C1 cells (HB1.F3.C1/AdCMVrCE) and CPT-11 were comparable with those in mice receiving CPT-11 only. These data support the hypothesis that the antitumor effect of the described neural stem/progenitor cell-directed enzyme prodrug therapy (NDEPT) is mediated by production of high concentrations of active drug selectively at tumor sites, thereby maximizing the antitumor effect of CPT-11. NDEPT approaches merit further investigation as effective, targeted therapy for metastatic tumors. We propose that the described approach may have greatest use for eradicating minimum residual disease.


Science Translational Medicine | 2013

Neural Stem Cell–Mediated Enzyme/Prodrug Therapy for Glioma: Preclinical Studies

Karen S. Aboody; Joseph Najbauer; Marianne Z. Metz; Massimo D'Apuzzo; Margarita Gutova; Alexander J. Annala; Timothy W. Synold; Larry A. Couture; Suzette Blanchard; Rex Moats; Elizabeth Garcia; Soraya Aramburo; Valenzuela Vv; Richard T. Frank; Michael E. Barish; Christine E. Brown; Seung U. Kim; Behnam Badie; Jana Portnow

Neural stem cells home to gliomas in mice where they convert a prodrug to 5-fluorouracil, leading to tumor regression. Cellular Assassins Derived from the supporting cells of the brain, gliomas are deadly tumors that can be only temporarily held at bay, but not cured. New ways to treat these cancers are needed. To get regulatory approval to test a new stem cell–based therapy in patients, Aboody et al. performed a series of preclinical experiments in mice with artificially implanted gliomas in their brains. By mimicking closely the treatments that they hoped to perform in humans, these authors were able to show to the satisfaction of the regulatory agency that the treatment was safe and effective enough in the mice to warrant a first-in-human trial in patients. The authors used a neural stem cell line carrying a v-myc gene and a gene for cytosine deaminase. These cells exhibit tropism to human glioma cells. When injected into mice with gliomas, they migrate to the site of the tumor, even when the mice are treated with steroids or radiation, as might be the case for human patients. The cytosine deaminase in the cells provides another anticancer weapon. This enzyme converts the prodrug 5-fluorocytosine (5-FC) to the toxic 5-flurouracil (5-FU), delivering a high concentration of the therapeutic agent directly in and around the tumor and causing it to shrink significantly. Injection of excess numbers of cells or increasing the dose of 5-FU did not result in any abnormalities in the animals; in fact, by 12 weeks after injection, no cells were to be seen in the brain or elsewhere, even when a highly sensitive polymerase chain reaction method was used to look for the v-myc DNA. This targeted cell-based approach to cancer therapy that concentrates the therapeutic agent in the vicinity of the tumor is expected to reduce toxicity to other tissues. Thus, a higher local dose is possible, potentially improving efficacy against the tumor. The phase 1 trial derived from these preclinical results is ongoing; its end will allow evaluation of how well these preclinical in vivo studies set the stage for humans. High-grade gliomas are extremely difficult to treat because they are invasive and therefore not curable by surgical resection; the toxicity of current chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles to target enzyme/prodrug therapy selectively to tumors. We used a cytosine deaminase (CD)–expressing clonal human NSC line, HB1.F3.CD, to home to gliomas in mice and locally convert the prodrug 5-fluorocytosine to the active chemotherapeutic 5-fluorouracil. In vitro studies confirmed that the NSCs have normal karyotype, tumor tropism, and CD expression, and are genetically and functionally stable. In vivo biodistribution studies demonstrated NSC retention of tumor tropism, even in mice pretreated with radiation or dexamethasone to mimic clinically relevant adjuvant therapies. We evaluated safety and toxicity after intracerebral administration of the NSCs in non–tumor-bearing and orthotopic glioma–bearing immunocompetent and immunodeficient mice. We detected no difference in toxicity associated with conversion of 5-fluorocytosine to 5-fluorouracil, no NSCs outside the brain, and no histological evidence of pathology or tumorigenesis attributable to the NSCs. The average tumor volume in mice that received HB1.F3.CD NSCs and 5-fluorocytosine was about one-third that of the average volume in control mice. On the basis of these results, we conclude that combination therapy with HB1.F3.CD NSCs and 5-fluorocytosine is safe, nontoxic, and effective in mice. These data have led to approval of a first-in-human study of an allogeneic NSC-mediated enzyme/prodrug-targeted cancer therapy in patients with recurrent high-grade glioma.

Collaboration


Dive into the Karen S. Aboody's collaboration.

Top Co-Authors

Avatar

Margarita Gutova

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph Najbauer

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Seung U. Kim

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marianne Z. Metz

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael E. Barish

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rachael Mooney

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Garcia

Beckman Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge