Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marianne Z. Metz is active.

Publication


Featured researches published by Marianne Z. Metz.


Molecular Cancer Research | 2008

Neural stem cell tropism to glioma: critical role of tumor hypoxia.

Donghong Zhao; Joseph Najbauer; Elizabeth Garcia; Marianne Z. Metz; Margarita Gutova; Carlotta A. Glackin; Seung U. Kim; Karen S. Aboody

Hypoxia is a critical aspect of the microenvironment in glioma and generally signifies unfavorable clinical outcome. Effective targeting of hypoxic areas in gliomas remains a significant therapeutic challenge. New therapeutic platforms using neural stem cells (NSC) for tumor-targeted drug delivery show promise in treatment of cancers that are refractory to traditional therapies. However, the molecular mechanisms of NSC targeting to hypoxic tumor areas are not well understood. Therefore, we investigated the role of hypoxia in directed migration of NSCs to glioma and identified the specific signaling molecules involved. Our data showed that hypoxia caused increased migration of human HB1.F3 NSCs to U251 human glioma-conditioned medium in vitro. In HB1.F3 NSCs, hypoxia led to up-regulation of CXCR4, urokinase-type plasminogen activator receptor (uPAR), vascular endothelial growth factor receptor 2 (VEGFR2), and c-Met receptors. Function-inhibiting antibodies to these receptors inhibited the migration of HB1.F3 cells to glioma-conditioned medium. Small interfering RNA knockdown of hypoxia-inducible factor-1α in glioma cells blocked the hypoxia-induced migration of NSCs, which was due to decreased expression of stromal cell–derived factor-1 (SDF-1), uPA, and VEGF in glioma cells. Our in vivo data provided direct evidence that NSCs preferentially distributed to hypoxic areas inside intracranial glioma xenografts, as detected by pimonidazole hypoxia probe, as well as to the tumor edge, and that both areas displayed high SDF-1 expression. These observations indicate that hypoxia is a key factor in determining NSC tropism to glioma and that SDF-1/CXCR4, uPA/uPAR, VEGF/VEGFR2, and hepatocyte growth factor/c-Met signaling pathways mediate increased NSC-to-glioma tropism under hypoxia. These results have significant implications for development of stem cell–mediated tumor-selective gene therapies. (Mol Cancer Res 2008;6(12):1819–29)


Cancer Research | 2007

Tumor-Targeted Enzyme/Prodrug Therapy Mediates Long-term Disease-Free Survival of Mice Bearing Disseminated Neuroblastoma

Mary K. Danks; K. Jin Yoon; Rebecca A. Bush; Joanna S. Remack; Monika Wierdl; Lyudmila Tsurkan; Seung U. Kim; Elizabeth Garcia; Marianne Z. Metz; Joseph Najbauer; Philip M. Potter; Karen S. Aboody

Neural stem cells and progenitor cells migrate selectively to tumor loci in vivo. We exploited the tumor-tropic properties of HB1.F3.C1 cells, an immortalized cell line derived from human fetal telencephalon, to deliver the cDNA encoding a secreted form of rabbit carboxylesterase (rCE) to disseminated neuroblastoma tumors in mice. This enzyme activates the prodrug CPT-11 more efficiently than do human enzymes. Mice bearing multiple tumors were treated with rCE-expressing HB1.F3.C1 cells and schedules of administration of CPT-11 that produced levels of active drug (SN-38) tolerated by patients. Both HB1.F3.C1 cells and CPT-11 were given i.v. None of the untreated mice and 30% of mice that received only CPT-11 survived long term. In contrast, 90% of mice treated with rCE-expressing HB1.F3.C1 cells and 15 mg/kg CPT-11 survived for 1 year without detectable tumors. Plasma carboxylesterase activity and SN-38 levels in mice receiving both rCE-expressing HB1.F3.C1 cells (HB1.F3.C1/AdCMVrCE) and CPT-11 were comparable with those in mice receiving CPT-11 only. These data support the hypothesis that the antitumor effect of the described neural stem/progenitor cell-directed enzyme prodrug therapy (NDEPT) is mediated by production of high concentrations of active drug selectively at tumor sites, thereby maximizing the antitumor effect of CPT-11. NDEPT approaches merit further investigation as effective, targeted therapy for metastatic tumors. We propose that the described approach may have greatest use for eradicating minimum residual disease.


Science Translational Medicine | 2013

Neural Stem Cell–Mediated Enzyme/Prodrug Therapy for Glioma: Preclinical Studies

Karen S. Aboody; Joseph Najbauer; Marianne Z. Metz; Massimo D'Apuzzo; Margarita Gutova; Alexander J. Annala; Timothy W. Synold; Larry A. Couture; Suzette Blanchard; Rex Moats; Elizabeth Garcia; Soraya Aramburo; Valenzuela Vv; Richard T. Frank; Michael E. Barish; Christine E. Brown; Seung U. Kim; Behnam Badie; Jana Portnow

Neural stem cells home to gliomas in mice where they convert a prodrug to 5-fluorouracil, leading to tumor regression. Cellular Assassins Derived from the supporting cells of the brain, gliomas are deadly tumors that can be only temporarily held at bay, but not cured. New ways to treat these cancers are needed. To get regulatory approval to test a new stem cell–based therapy in patients, Aboody et al. performed a series of preclinical experiments in mice with artificially implanted gliomas in their brains. By mimicking closely the treatments that they hoped to perform in humans, these authors were able to show to the satisfaction of the regulatory agency that the treatment was safe and effective enough in the mice to warrant a first-in-human trial in patients. The authors used a neural stem cell line carrying a v-myc gene and a gene for cytosine deaminase. These cells exhibit tropism to human glioma cells. When injected into mice with gliomas, they migrate to the site of the tumor, even when the mice are treated with steroids or radiation, as might be the case for human patients. The cytosine deaminase in the cells provides another anticancer weapon. This enzyme converts the prodrug 5-fluorocytosine (5-FC) to the toxic 5-flurouracil (5-FU), delivering a high concentration of the therapeutic agent directly in and around the tumor and causing it to shrink significantly. Injection of excess numbers of cells or increasing the dose of 5-FU did not result in any abnormalities in the animals; in fact, by 12 weeks after injection, no cells were to be seen in the brain or elsewhere, even when a highly sensitive polymerase chain reaction method was used to look for the v-myc DNA. This targeted cell-based approach to cancer therapy that concentrates the therapeutic agent in the vicinity of the tumor is expected to reduce toxicity to other tissues. Thus, a higher local dose is possible, potentially improving efficacy against the tumor. The phase 1 trial derived from these preclinical results is ongoing; its end will allow evaluation of how well these preclinical in vivo studies set the stage for humans. High-grade gliomas are extremely difficult to treat because they are invasive and therefore not curable by surgical resection; the toxicity of current chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles to target enzyme/prodrug therapy selectively to tumors. We used a cytosine deaminase (CD)–expressing clonal human NSC line, HB1.F3.CD, to home to gliomas in mice and locally convert the prodrug 5-fluorocytosine to the active chemotherapeutic 5-fluorouracil. In vitro studies confirmed that the NSCs have normal karyotype, tumor tropism, and CD expression, and are genetically and functionally stable. In vivo biodistribution studies demonstrated NSC retention of tumor tropism, even in mice pretreated with radiation or dexamethasone to mimic clinically relevant adjuvant therapies. We evaluated safety and toxicity after intracerebral administration of the NSCs in non–tumor-bearing and orthotopic glioma–bearing immunocompetent and immunodeficient mice. We detected no difference in toxicity associated with conversion of 5-fluorocytosine to 5-fluorouracil, no NSCs outside the brain, and no histological evidence of pathology or tumorigenesis attributable to the NSCs. The average tumor volume in mice that received HB1.F3.CD NSCs and 5-fluorocytosine was about one-third that of the average volume in control mice. On the basis of these results, we conclude that combination therapy with HB1.F3.CD NSCs and 5-fluorocytosine is safe, nontoxic, and effective in mice. These data have led to approval of a first-in-human study of an allogeneic NSC-mediated enzyme/prodrug-targeted cancer therapy in patients with recurrent high-grade glioma.


PLOS ONE | 2006

Development of a Tumor-Selective Approach to Treat Metastatic Cancer

Karen S. Aboody; Rebecca A. Bush; Elizabeth Garcia; Marianne Z. Metz; Joseph Najbauer; Kristine A. Justus; Doris A. Phelps; Joanna S. Remack; Karina Jin Yoon; Shanna Gillespie; Seung U. Kim; Carlotta A. Glackin; Philip M. Potter; Mary K. Danks

Background Patients diagnosed with metastatic cancer have almost uniformly poor prognoses. The treatments available for patients with disseminated disease are usually not curative and have side effects that limit the therapy that can be given. A treatment that is selectively toxic to tumors would maximize the beneficial effects of therapy and minimize side effects, potentially enabling effective treatment to be administered. Methods and Findings We postulated that the tumor-tropic property of stem cells or progenitor cells could be exploited to selectively deliver a therapeutic gene to metastatic solid tumors, and that expression of an appropriate transgene at tumor loci might mediate cures of metastatic disease. To test this hypothesis, we injected HB1.F3.C1 cells transduced to express an enzyme that efficiently activates the anti-cancer prodrug CPT-11 intravenously into mice bearing disseminated neuroblastoma tumors. The HB1.F3.C1 cells migrated selectively to tumor sites regardless of the size or anatomical location of the tumors. Mice were then treated systemically with CPT-11, and the efficacy of treatment was monitored. Mice treated with the combination of HB1.F3.C1 cells expressing the CPT-11-activating enzyme and this prodrug produced tumor-free survival of 100% of the mice for >6 months (P<0.001 compared to control groups). Conclusions The novel and significant finding of this study is that it may be possible to exploit the tumor-tropic property of stem or progenitor cells to mediate effective, tumor-selective therapy for metastatic tumors, for which no tolerated curative treatments are currently available.


PLOS ONE | 2007

Identification of uPAR-positive chemoresistant cells in small cell lung cancer.

Margarita Gutova; Joseph Najbauer; Anna Gevorgyan; Marianne Z. Metz; Yehua Weng; Chu-Chih Shih; Karen S. Aboody

Background The urokinase plasminogen activator (uPA) and its receptor (uPAR/CD87) are major regulators of extracellular matrix degradation and are involved in cell migration and invasion under physiological and pathological conditions. The uPA/uPAR system has been of great interest in cancer research because it is involved in the development of most invasive cancer phenotypes and is a strong predictor of poor patient survival. However, little is known about the role of uPA/uPAR in small cell lung cancer (SCLC), the most aggressive type of lung cancer. We therefore determined whether uPA and uPAR are involved in generation of drug resistant SCLC cell phenotype. Methods and Findings We screened six human SCLC cell lines for surface markers for putative stem and cancer cells. We used fluorescence-activated cell sorting (FACS), fluorescence microscopy and clonogenic assays to demonstrate uPAR expression in a subpopulation of cells derived from primary and metastatic SCLC cell lines. Cytotoxic assays were used to determine the sensitivity of uPAR-positive and uPAR-negative cells to chemotherapeutic agents. The uPAR-positive cells in all SCLC lines demonstrated multi-drug resistance, high clonogenic activity and co-expression of CD44 and MDR1, putative cancer stem cell markers. Conclusions These data suggest that uPAR-positive cells may define a functionally important population of cancer cells in SCLC, which are resistant to traditional chemotherapies, and could serve as critical targets for more effective therapeutic interventions in SCLC.


Stem Cells | 2008

Neural Stem Cell Targeting of Glioma Is Dependent on Phosphoinositide 3‐Kinase Signaling

Stephen E. Kendall; Joseph Najbauer; Heather F. Johnston; Marianne Z. Metz; Shan Li; Marisa Bowers; Elizabeth Garcia; Seung U. Kim; Michael E. Barish; Karen S. Aboody; Carlotta A. Glackin

The utility of neural stem cells (NSCs) has extended beyond regenerative medicine to targeted gene delivery, as NSCs possess an inherent tropism to solid tumors, including invasive gliomas. However, for optimal clinical implementation, an understanding of the molecular events that regulate NSC tumor tropism is needed to ensure their safety and to maximize therapeutic efficacy. We show that human NSC lines responded to multiple tumor‐derived growth factors and that hepatocyte growth factor (HGF) induced the strongest chemotactic response. Gliomatropism was critically dependent on c‐Met signaling, as short hairpin RNA‐mediated ablation of c‐Met significantly attenuated the response. Furthermore, inhibition of Ras‐phosphoinositide 3‐kinase (PI3K) signaling impaired the migration of human neural stem cells (hNSCs) toward HGF and other growth factors. Migration toward tumor cells is a highly regulated process, in which multiple growth factor signals converge on Ras‐PI3K, causing direct modification of the cytoskeleton. The signaling pathways that regulate hNSC migration are similar to those that promote unregulated glioma invasion, suggesting shared cellular mechanisms and responses.


PLOS ONE | 2009

Iron Labeling and Pre-Clinical MRI Visualization of Therapeutic Human Neural Stem Cells in a Murine Glioma Model

Mya S. Thu; Joseph Najbauer; Stephen E. Kendall; Ira Harutyunyan; Nicole Sangalang; Margarita Gutova; Marianne Z. Metz; Elizabeth Garcia; Richard T. Frank; Seung U. Kim; Rex Moats; Karen S. Aboody

Background Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs) to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA) approval. Methodology For human use, the characteristics of therapeutic Neural Stem Cells must be clearly defined with any pertubation to the cell including iron labeling requiring reanalysis of cellular physiology. Here, we studied the effect of iron-loading of the therapeutic NSCs, with ferumoxide-protamine sulfate complex (FE-Pro) on viability, proliferation, migratory properties and transgene expression, when compared to non-labeled cells. FE-Pro labeled NSCs were imaged by MRI at tumor sites, after intracranial administration into the hemisphere contralateral to the tumor, in an orthotopic human glioma xenograft mouse model. Conclusion FE-Pro labeled NSCs retain their proliferative status, tumor tropism, and maintain stem cell character, while allowing in vivo cellular MRI tracking at 7 Tesla, to monitor their real-time migration and distribution at brain tumor sites. Of significance, this work directly supports the use of FE-Pro-labeled NSCs for real-time tracking in the clinical trial under development: “A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically modified Neural Stem Cells Expressing Escherichia coli Cytosine Deaminase for Treatment of Recurrent High-Grade Gliomas”.


Breast Cancer Research and Treatment | 2005

Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3K) and epidermal growth factor receptor (EGFR) kinase inhibitors.

Carmel T. Chan; Marianne Z. Metz; Susan E. Kane

Her2 (erbB2/neu) is overexpressed in 25–30% of human breast cancers. Herceptin is a recombinant humanized Her2 antibody used to treat breast cancer patients with Her2 overexpression. Over a 5-month selection process, we isolated clones of BT474 (BT) human breast carcinoma cells (BT/HerR) that were resistant to Herceptin in vitro. In BT/HerR subclones, cell-surface, phosphorylated and total cellular Her2 protein remained high in the continuous presence of Herceptin. Likewise, the levels of cell-surface, phosphorylated, and total cellular Her3 and EGFR were either unchanged or only slightly elevated in BT/HerR subclones relative to BT cells. One BT/HerR subclone had substantially upregulated cell-surface EGFR, but this did not correlate with a higher relative resistance to Herceptin. In looking at the downstream PI-3K/Akt signaling pathway, phosphorylated and total Akt levels and Akt kinase activities were all sustained in BT/HerR subclones in the presence of Herceptin, but significantly downregulated in BT cells exposed to Herceptin. Whereas BT cells lost sensitivity to the PI-3K inhibitor LY294002 in the presence of Herceptin, BT/HerR subclones were equally sensitive to this agent in the presence and absence of Herceptin. This suggests that BT/HerR subclones acquired a Herceptin-resistant mechanism of PI-3K signaling. BT/HerR subclones were also sensitive to the EGFR kinase inhibitor AG1478 in the presence of Herceptin, to the same extent as BT cells. The BT/Her R subclones provide new insights into mechanisms of Herceptin resistance and suggest new treatment strategies in combination with other inhibitors targeted to signal transduction pathways.


Stem Cells | 2008

Urokinase Plasminogen Activator and Urokinase Plasminogen Activator Receptor Mediate Human Stem Cell Tropism to Malignant Solid Tumors

Margarita Gutova; Joseph Najbauer; Richard T. Frank; Stephen E. Kendall; Anna Gevorgyan; Marianne Z. Metz; Mark Guevorkian; Marissa Edmiston; Donghong Zhao; Carlotta A. Glackin; Seung U. Kim; Karen S. Aboody

Human neural and mesenchymal stem cells have been identified for cell‐based therapies in regenerative medicine and as vehicles for delivering therapeutic agents to areas of injury and tumors. However, the signals required for homing and recruitment of stem cells to these sites are not well understood. Urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) are involved in chemotaxis and cell guidance during normal development and are upregulated in invasive tumors. Here we provided evidence that activation of uPA and uPAR in malignant solid tumors (brain, lung, prostate, and breast) augments neural and mesenchymal stem cell tropism. Expression levels of uPAR on human solid tumor cell lines correlated with levels of uPA and soluble uPAR in tumor cell‐conditioned media. Cytokine expression profiles of these tumor‐conditioned media were determined by protein arrays. Among 79 cytokines investigated, interleukin (IL)‐6, IL‐8, and monocyte chemoattractant protein‐1 were the most highly expressed cytokines in uPAR‐positive tumors. We provided evidence that human recombinant uPA induced stem cell migration, whereas depletion of uPA from PC‐3 prostate cancer cell‐conditioned medium blocked stem cell migration. Furthermore, retrovirus‐mediated overexpression of uPA and uPAR in neuroblastoma (NB1691) cells induced robust migration of stem cells toward NB1691 cell‐conditioned media, compared with media derived from wild‐type NB1691 cells. We conclude that expression of uPA and uPAR in cancer cells underlies a novel mechanism of stem cell tropism to malignant solid tumors, which may be important for development of optimal stem cell‐based therapies.


PLOS ONE | 2009

Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies.

Richard T. Frank; Marissa Edmiston; Stephen E. Kendall; Joseph Najbauer; Chia-Wei Cheung; Thewodros Kassa; Marianne Z. Metz; Seung U. Kim; Carlotta A. Glackin; Anna M. Wu; Paul J. Yazaki; Karen S. Aboody

Background Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS). Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs) can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors. Methods and Findings As proof-of-concept, we selected Herceptin™ (trastuzumab), a monoclonal antibody widely used to treat HER2-overexpressing breast cancer. HER2 overexpression in breast cancer is highly correlated with CNS metastases, which are inaccessible to trastuzumab therapy. Therefore, NSC-mediated delivery of trastuzumab may improve its therapeutic efficacy. Here we report, for the first time, that human NSCs can be genetically modified to secrete anti-HER2 immunoglobulin molecules. These NSC-secreted antibodies assemble properly, possess tumor cell-binding affinity and specificity, and can effectively inhibit the proliferation of HER2-overexpressing breast cancer cells in vitro. We also demonstrate that immunoglobulin-secreting NSCs exhibit preferential tropism to tumor cells in vivo, and can deliver antibodies to human breast cancer xenografts in mice. Conclusions Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically, this NSC-mediated antibody delivery system has the potential to significantly improve clinical outcome for patients with HER2-overexpressing breast cancer.

Collaboration


Dive into the Marianne Z. Metz's collaboration.

Top Co-Authors

Avatar

Karen S. Aboody

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Margarita Gutova

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph Najbauer

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Seung U. Kim

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Garcia

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael E. Barish

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rex Moats

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Revathiswari Tirughana

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Timothy W. Synold

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Carlotta A. Glackin

City of Hope National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge