Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Tenney is active.

Publication


Featured researches published by Karen Tenney.


Bioorganic & Medicinal Chemistry | 2011

Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants

Ocky Karna Radjasa; Yvette M. Vaske; Gabriel Navarro; Helene C. Vervoort; Karen Tenney; Roger G. Linington; Phillip Crews

Coral reefs are among the most productive marine ecosystems and are the source of a large group of structurally unique biosynthetic products. Annual reviews of marine natural products continue to illustrate that the most prolific source of bioactive compounds consist of coral reef invertebrates-sponges, ascidians, mollusks, and bryozoans. This account examines recent milestone developments pertaining to compounds from invertebrates designated as therapeutic leads for biomedical discovery. The focus is on the secondary metabolites, their inspirational structural scaffolds and the possible role of micro-organism associants in their biosynthesis. Also important are the increasing concerns regarding the collection of reef invertebrates for the discovery process. The case examples considered here will be useful to insure that future research to unearth bioactive invertebrate-derived compounds will be carried out in a sustainable and environmentally conscious fashion. Our account begins with some observations pertaining to the natural history of these organisms. Many still believe that a serious obstacle to the ultimate development of a marine natural product isolated from coral reef invertebrates is the problem of compound supply. Recent achievements through total synthesis can now be drawn on to forcefully cast this myth aside. The tools of semisynthesis of complex natural products or insights from SAR efforts to simplify an active pharmacophore are at hand and demand discussion. Equally exciting is the prospect that invertebrate-associated micro-organisms may represent the next frontier to accelerate the development of high priority therapeutic candidates. Currently in the United States there are two FDA approved marine-derived therapeutic drugs and two others that are often cited as being marine-inspired. This record will be examined first followed by an analysis of a dozen of our favorite examples of coral reef invertebrate natural products having therapeutic potential. The record of using complex scaffolds of marine invertebrate products as the starting point for development will be reviewed by considering eight case examples. The potential promise of developing invertebrate-derived micro-organisms as the starting point for further exploration of therapeutically relevant structures is considered. Also significant is the circumstance that there are some 14 sponge-derived compounds that are available to facilitate fundamental biological investigations.


Organic Letters | 2010

Azonazine, a novel dipeptide from a Hawaiian marine sediment-derived fungus, Aspergillus insulicola.

Quan-Xiang Wu; Mitchell S. Crews; Marija Draskovic; Johann Sohn; Tyler A. Johnson; Karen Tenney; Frederick A. Valeriote; Xiao Jun Yao; Leonard F. Bjeldanes; Phillip Crews

Azonazine, a unique hexacyclic dipeptide, was isolated from a Hawaiian marine sediment-derived fungus eventually identified as Aspergillus insulicola. Its absolute configuration, 2R,10R,11S,19R, was established using NMR, HRESIMS, and CD data plus insights derived from molecular models. A possible route for its biogenesis is proposed, and biological properties were explored against cancer cell lines and in an NFκB inhibition assay.


Journal of Natural Products | 2010

A β-Carboline Alkaloid from the Papua New Guinea Marine Sponge Hyrtios reticulatus

Wayne D. Inman; Walter M. Bray; Nadine C. Gassner; R. Scott Lokey; Karen Tenney; Young Yongchun Shen; Karen TenDyke; Ted Suh; Phillip Crews

A new 1-imidazoyl-3-carboxy-6-hydroxy-beta-carboline alkaloid, named hyrtiocarboline (1), was isolated from a Papua New Guinea marine sponge, Hyrtios reticulatus. The structure was elucidated from spectroscopic data, including (1)H-(15)N HMBC NMR experiments, which provided complementary (15)N chemical shift information in support of the structure. This compound showed selective antiproliferative activity against H522-T1 non-small cell lung, MDA-MB-435 melanoma, and U937 lymphoma cancer cell lines.


Journal of Natural Products | 2011

Natural Product Libraries to Accelerate the High Throughput Discovery of Therapeutic Leads

Tyler A. Johnson; Johann Sohn; Wayne D. Inman; Samarkand A. Estee; Steven T. Loveridge; Helene C. Vervoort; Karen Tenney; Junke Liu; Kenny K. H. Ang; Joseline Ratnam; Walter M. Bray; Nadine C. Gassner; Young Yongchun Shen; R. Scott Lokey; James H. McKerrow; Kyria Boundy-Mills; Arif Nukanto; Atit Kanti; Heddy Julistiono; Leonardus B S Kardono; Leonard F. Bjeldanes; Phillip Crews

A high-throughput (HT) paradigm generating LC-MS-UV-ELSD-based natural product libraries to discover compounds with new bioactivities and or molecular structures is presented. To validate this methodology, an extract of the Indo-Pacific marine sponge Cacospongia mycofijiensis was evaluated using assays involving cytoskeletal profiling, tumor cell lines, and parasites. Twelve known compounds were identified including latrunculins (1-4, 10), fijianolides (5, 8, 9), mycothiazole (11), aignopsanes (6, 7), and sacrotride A (13). Compounds 1-5 and 8-11 exhibited bioactivity not previously reported against the parasite T. brucei, while 11 showed selectivity for lymphoma (U937) tumor cell lines. Four new compounds were also discovered including aignopsanoic acid B (13), apo-latrunculin T (14), 20-methoxy-fijianolide A (15), and aignopsane ketal (16). Compounds 13 and 16 represent important derivatives of the aignopsane class, 14 exhibited inhibition of T. brucei without disrupting microfilament assembly, and 15 demonstrated modest microtubule-stabilizing effects. The use of removable well plate libraries to avoid false positives from extracts enriched with only one or two major metabolites is also discussed. Overall, these results highlight the advantages of applying modern methods in natural products-based research to accelerate the HT discovery of therapeutic leads and/or new molecular structures using LC-MS-UV-ELSD-based libraries.


Journal of Organic Chemistry | 2008

Structure revision of spiroleucettadine, a sponge alkaloid with a bicyclic core meager in H-atoms.

Kimberly N. White; Taro Amagata; Allen G. Oliver; Karen Tenney; Philip J. Wenzel; Phillip Crews

Our 2004 disclosure of the amino hemiketal-containing spiroleucettadine was met with keen interest by the natural products and synthetic communities. As repeated efforts to synthesize spiroleucettadine failed and questions regarding the original structure elucidation process arose, evidence mounted against the validity of the proposed structure. The low ratio of H/C in the core of spiroleucattadine complicated the original structure elucidation process. Speculation prompted a reisolation of spiroleucettadine from an untouched portion of the original Luecetta collection and a thorough analysis of analytical data. In addition, a systematic analysis of candidate structures was performed via density functional theory (DFT) calculations; a favored high scoring structure 1b was ultimately confirmed to be spiroleucettadine via X-ray analysis of crystalline spiroleucettadine and reinforced the validity of DFT calculations in structure elucidation. We present the revised structure of spiroleucettadine, a bicyclic sponge alkaloid with a scarcity of H-atoms in its core.


Bioorganic & Medicinal Chemistry | 2010

Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi.

Katharine R. Watts; Joseline Ratnam; Kean-Hooi Ang; Karen Tenney; Jennifer E. Compton; James H. McKerrow; Phillip Crews

Human African trypanosomiasis (HAT, commonly known as African sleeping sickness) is categorized as a neglected disease, as it afflicts >50,000 people annually in sub-saharan Africa, and there are few formal programs in the world focused on drug discovery approaches for this disease. In this study, we examined the crude extracts of two fungal strains (Aspergillus fumigatus and Nectria inventa) isolated from deep water sediment which provided >99% growth inhibition at 1microg/mL of Trypanosoma brucei, the causative parasite of HAT. A collection of fifteen natural products was supplemented with six semi-synthetic derivatives and one commercially available compound. Twelve of the compounds, each containing a diketopiperazine core, showed excellent activity against T. brucei (IC(50)=0.002-40microM), with selectivity over mammalian cells as great as 20-fold. The trypanocidal diketopiperazines were also tested against two cysteine protease targets Rhodesain and TbCatB, where five compounds showed inhibition activity at concentrations less than 20microM. A preliminary activity pattern is described and analyzed.


Current Opinion in Biotechnology | 2010

The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules

Katharine R. Watts; Karen Tenney; Phillip Crews

This review focuses on six important parasitic diseases that adversely affect the health and lives of over one billion people worldwide. In light of the global human impact of these neglected tropical diseases (NTDs), several initiatives and campaigns have been mounted to eradicate these infections once and for all. Currently available therapeutics summarized herein are either ineffective and/or have severe and deleterious side effects. Resistant strains continue to emerge and there is an overall unmet and urgent need for new antiparasitic drugs. Marine-derived small molecules (MDSMs) from invertebrates comprise an extremely diverse and promising source of compounds from a wide variety of structural classes. New discoveries of marine natural product privileged structures and compound classes that are being made via natural product library screening using whole cell in vitro assays are highlighted. It is striking to note that for the first time in history the entire genomes of all six parasites have been sequenced and additional transcriptome and proteomic analyses are available. Furthermore, open and shared, publicly available databases of the genome sequences, compounds, screening assays, and druggable molecular targets are being used by the worldwide research community. A combined assessment of all of the above factors, especially of current discoveries in marine natural products, implies a brighter future with more effective, affordable, and benign antiparasitic therapeutics.


Journal of Natural Products | 2009

NMR strategy for unraveling structures of bioactive sponge-derived oxy-polyhalogenated diphenyl ethers.

Laurent Calcul; Raymond Chow; Allen G. Oliver; Karen Tenney; Kimberly N. White; Alexander Wood; Catherine Fiorilla; Phillip Crews

The overexpression of the Mcl-1 protein in cancerous cells results in the sequestering of Bak, a key component in the regulation of normal cell apoptosis. Our investigation of the ability of marine-derived small-molecule natural products to inhibit this protein-protein interaction led to the isolation of several bioactive oxy-polyhalogenated diphenyl ethers. A semipure extract, previously obtained from Dysidea (Lamellodysidea) herbacea and preserved in our repository, along with an untouched Dysidea granulosa marine sponge afforded 13 distinct oxy-polyhalogenated diphenyl ethers. Among these isolates were four new compounds, 5, 6, 10, and 12. The structure elucidation of these molecules was complicated by the plethora of structural variants that exist in the literature. During dereplication, we established a systematic method for analyzing this class of compounds. The strategy is governed by trends in the (1)H and (13)C NMR shifts of the aromatic rings, and the success of the strategy was checked by X-ray crystal structure analysis.


Journal of Natural Products | 2009

Using enzyme assays to evaluate the structure and bioactivity of sponge-derived meroterpenes

Sarah J. Robinson; Eric K. Hoobler; Michelle Riener; Steven T. Loveridge; Karen Tenney; Frederick A. Valeriote; Theodore R. Holman; Phillip Crews

Enzyme screening of crude sponge extracts prioritized a 2005 Papua New Guinea collection of Hyrtios sp. for further study. The MeOH extract contained puupehenone and four puupehenone analogues (1, 2, 3, 5, and 7) along with a new diastereomer, 20-epi-hydroxyhaterumadienone (4), and a new analogue, 15-oxo-puupehenoic acid (6). The drimane terpene core of 4 and 6 was rapidly dereplicated, and the modified Moshers method identified 4, while 1D and 2D NMR techniques were used to solve 6. These compounds plus noteworthy repository natural products and standards were tested against three lipoxygenase isozymes, human 5-, 12-, and 15-lipoxygenases. Significant potency and selectivity profiles were exhibited in the human 5-lipoxygenase assay by puupehenone (1) and jaspaquinol (9) and structural factors responsible for activity identified.


Journal of Organic Chemistry | 2011

Utilizing DART Mass Spectrometry to Pinpoint Halogenated Metabolites from a Marine Invertebrate-Derived Fungus

Katharine R. Watts; Steven T. Loveridge; Karen Tenney; Joseph Media; Frederick A. Valeriote; Phillip Crews

Prenylated indole alkaloids are a diverse group of fungal secondary metabolites and represent an important biosynthetic class. In this study we have identified new halogenated prenyl-indole alkaloids from an invertebrate-derived Malbranchea graminicola strain. Using direct analysis in real time (DART) mass spectrometry, these compounds were initially detected from hyphae of the fungus grown on agar plates, without the need for any organic extraction. Subsequently, the metabolites were isolated from liquid culture in artificial seawater. The structures of two novel chlorinated metabolites, named (-)-spiromalbramide and (+)-isomalbrancheamide B, provide additional insights into the assembly of the malbrancheamide compound family. Remarkably, two new brominated analogues, (+)-malbrancheamide C and (+)-isomalbrancheamide C, were produced by enriching the growth medium with bromine salts.

Collaboration


Dive into the Karen Tenney's collaboration.

Top Co-Authors

Avatar

Phillip Crews

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taro Amagata

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Media

Henry Ford Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Scott Lokey

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge