Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Scott Lokey is active.

Publication


Featured researches published by R. Scott Lokey.


Nature Chemical Biology | 2011

On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds

Tina R White; Chad M Renzelman; Arthur C Rand; Taha Rezai; Cayla M. McEwen; Vladimir Gelev; Rushia Turner; Roger G. Linington; Siegfried S. F. Leung; Amit S. Kalgutkar; Jonathan N. Bauman; Yizhong Zhang; Spiros Liras; David A. Price; Alan M. Mathiowetz; Matthew P. Jacobson; R. Scott Lokey

Backbone N-methylation is common among peptide natural products and has a significant impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was determined by backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (MW = 755) with three N-methyl groups, showed an oral bioavailability of 28% in rat.


Molecular Systems Biology | 2010

Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action

Laura Kapitzky; Pedro Beltrao; Theresa J. Berens; Nadine C. Gassner; Chunshui Zhou; Arthur Wuster; Julie Wu; M. Madan Babu; Stephen J. Elledge; David P. Toczyski; R. Scott Lokey; Nevan J. Krogan

We present a cross‐species chemogenomic screening platform using libraries of haploid deletion mutants from two yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We screened a set of compounds of known and unknown mode of action (MoA) and derived quantitative drug scores (or D‐scores), identifying mutants that are either sensitive or resistant to particular compounds. We found that compound–functional module relationships are more conserved than individual compound–gene interactions between these two species. Furthermore, we observed that combining data from both species allows for more accurate prediction of MoA. Finally, using this platform, we identified a novel small molecule that acts as a DNA damaging agent and demonstrate that its MoA is conserved in human cells.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A chemical inhibitor of N-WASP reveals a new mechanism for targeting protein interactions

Jeffrey R. Peterson; R. Scott Lokey; Timothy J. Mitchison; Marc W. Kirschner

Cell morphology and motility are governed largely by complex signaling networks that ultimately engage the actin cytoskeleton. Understanding how individual circuits contribute to the process of forming cellular structures would be aided greatly by the availability of specific chemical inhibitors. We have used a novel chemical screen in Xenopus cell-free extracts to identify compounds that inhibit signaling pathways regulating actin polymerization. Here we report the results of a high-throughput screen for compounds that inhibit phosphatidylinositol 4,5-bisphosphate (PIP2)-induced actin assembly and the identification of the first compound, a cyclic peptide, known to block actin assembly by inhibiting an upstream signaling component. We identify the target of this compound as N-WASP, a protein that has been investigated for its role as a node interconnecting various actin signaling networks. We show that this compound prevents activation of the Arp2/3 complex by N-WASP by allosterically stabilizing the autoinhibited conformation of N-WASP.


MedChemComm | 2012

Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance

Arthur C Rand; Siegfried S. F. Leung; Heather Eng; Charles J. Rotter; Raman Sharma; Amit S. Kalgutkar; Yizhong Zhang; Manthena V. Varma; Kathleen A. Farley; Bhagyashree Khunte; Chris Limberakis; David A. Price; Spiros Liras; Alan M. Mathiowetz; Matthew P. Jacobson; R. Scott Lokey

A series of cyclic peptides were designed and prepared to investigate the physicochemical properties that affect oral bioavailabilty of this chemotype in rats. In particular, the ionization state of the peptide was examined by the incorporation of naturally occurring amino acid residues that are charged in differing regions of the gut. In addition, data was generated in a variety of in vitro assays and the usefulness of this data in predicting the subsequent oral bioavailability observed in the rat is discussed.


Journal of Natural Products | 2010

A β-Carboline Alkaloid from the Papua New Guinea Marine Sponge Hyrtios reticulatus

Wayne D. Inman; Walter M. Bray; Nadine C. Gassner; R. Scott Lokey; Karen Tenney; Young Yongchun Shen; Karen TenDyke; Ted Suh; Phillip Crews

A new 1-imidazoyl-3-carboxy-6-hydroxy-beta-carboline alkaloid, named hyrtiocarboline (1), was isolated from a Papua New Guinea marine sponge, Hyrtios reticulatus. The structure was elucidated from spectroscopic data, including (1)H-(15)N HMBC NMR experiments, which provided complementary (15)N chemical shift information in support of the structure. This compound showed selective antiproliferative activity against H522-T1 non-small cell lung, MDA-MB-435 melanoma, and U937 lymphoma cancer cell lines.


Journal of Medicinal Chemistry | 2015

Probing the Physicochemical Boundaries of Cell Permeability and Oral Bioavailability in Lipophilic Macrocycles Inspired by Natural Products

Andrew T. Bockus; Katrina W. Lexa; Cameron R. Pye; Amit S. Kalgutkar; Jarret W. Gardner; Kathryn C. R. Hund; William M. Hewitt; Joshua Schwochert; Emerson Glassey; David A. Price; Alan M. Mathiowetz; Spiros Liras; Matthew P. Jacobson; R. Scott Lokey

Cyclic peptide natural products contain a variety of conserved, nonproteinogenic structural elements such as d-amino acids and amide N-methylation. In addition, many cyclic peptides incorporate γ-amino acids and other elements derived from polyketide synthases. We hypothesized that the position and orientation of these extended backbone elements impact the ADME properties of these hybrid molecules, especially their ability to cross cell membranes and avoid metabolic degradation. Here we report the synthesis of cyclic hexapeptide diastereomers containing γ-amino acids (e.g., statines) and systematically investigate their structure-permeability relationships. These compounds were much more water-soluble and, in many cases, were both more membrane permeable and more stable to liver microsomes than a similar non-statine-containing derivative. Permeability correlated well with the extent of intramolecular hydrogen bonding observed in the solution structures determined in the low-dielectric solvent CDCl3, and one compound showed an oral bioavailability of 21% in rat. Thus, the incorporation of γ-amino acids offers a route to increase backbone diversity and improve ADME properties in cyclic peptide scaffolds.


Journal of Natural Products | 2011

Natural Product Libraries to Accelerate the High Throughput Discovery of Therapeutic Leads

Tyler A. Johnson; Johann Sohn; Wayne D. Inman; Samarkand A. Estee; Steven T. Loveridge; Helene C. Vervoort; Karen Tenney; Junke Liu; Kenny K. H. Ang; Joseline Ratnam; Walter M. Bray; Nadine C. Gassner; Young Yongchun Shen; R. Scott Lokey; James H. McKerrow; Kyria Boundy-Mills; Arif Nukanto; Atit Kanti; Heddy Julistiono; Leonardus B S Kardono; Leonard F. Bjeldanes; Phillip Crews

A high-throughput (HT) paradigm generating LC-MS-UV-ELSD-based natural product libraries to discover compounds with new bioactivities and or molecular structures is presented. To validate this methodology, an extract of the Indo-Pacific marine sponge Cacospongia mycofijiensis was evaluated using assays involving cytoskeletal profiling, tumor cell lines, and parasites. Twelve known compounds were identified including latrunculins (1-4, 10), fijianolides (5, 8, 9), mycothiazole (11), aignopsanes (6, 7), and sacrotride A (13). Compounds 1-5 and 8-11 exhibited bioactivity not previously reported against the parasite T. brucei, while 11 showed selectivity for lymphoma (U937) tumor cell lines. Four new compounds were also discovered including aignopsanoic acid B (13), apo-latrunculin T (14), 20-methoxy-fijianolide A (15), and aignopsane ketal (16). Compounds 13 and 16 represent important derivatives of the aignopsane class, 14 exhibited inhibition of T. brucei without disrupting microfilament assembly, and 15 demonstrated modest microtubule-stabilizing effects. The use of removable well plate libraries to avoid false positives from extracts enriched with only one or two major metabolites is also discussed. Overall, these results highlight the advantages of applying modern methods in natural products-based research to accelerate the HT discovery of therapeutic leads and/or new molecular structures using LC-MS-UV-ELSD-based libraries.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Retrospective analysis of natural products provides insights for future discovery trends

Cameron R. Pye; Matthew J. Bertin; R. Scott Lokey; William H. Gerwick; Roger G. Linington

Significance Natural products research seems to be at a critical juncture in terms of its relevance to modern biological science. We have evaluated this landscape of chemical diversity to ask key questions, including the following. How has the rate of discovery of new natural products progressed over the past 70 y? Has natural product structural novelty changed as a function of time? Has the rate of novel discovery declined in recent years? Does exploring novel taxonomic space afford an advantage in terms of novel compound discovery? Is it possible to estimate how close we are to describing all of the chemical space covered by natural products? And, finally, is there still value in exploring natural products space for novel biologically active natural products? Understanding of the capacity of the natural world to produce secondary metabolites is important to a broad range of fields, including drug discovery, ecology, biosynthesis, and chemical biology, among others. Both the absolute number and the rate of discovery of natural products have increased significantly in recent years. However, there is a perception and concern that the fundamental novelty of these discoveries is decreasing relative to previously known natural products. This study presents a quantitative examination of the field from the perspective of both number of compounds and compound novelty using a dataset of all published microbial and marine-derived natural products. This analysis aimed to explore a number of key questions, such as how the rate of discovery of new natural products has changed over the past decades, how the average natural product structural novelty has changed as a function of time, whether exploring novel taxonomic space affords an advantage in terms of novel compound discovery, and whether it is possible to estimate how close we are to having described all of the chemical space covered by natural products. Our analyses demonstrate that most natural products being published today bear structural similarity to previously published compounds, and that the range of scaffolds readily accessible from nature is limited. However, the analysis also shows that the field continues to discover appreciable numbers of natural products with no structural precedent. Together, these results suggest that the development of innovative discovery methods will continue to yield compounds with unique structural and biological properties.


Journal of Medicinal Chemistry | 2015

Going Out on a Limb: Delineating The Effects of β-Branching, N-Methylation, and Side Chain Size on the Passive Permeability, Solubility, and Flexibility of Sanguinamide A Analogues.

Andrew T. Bockus; Joshua Schwochert; Cameron R. Pye; Chad E. Townsend; Vong Sok; Maria A. Bednarek; R. Scott Lokey

It is well established that intramolecular hydrogen bonding and N-methylation play important roles in the passive permeability of cyclic peptides, but other structural features have been explored less intensively. Recent studies on the oral bioavailability of the cyclic heptapeptide sanguinamide A have raised the question of whether steric occlusion of polar groups via β-branching is an effective, yet untapped, tool in cyclic peptide permeability optimization. We report the structures of 17 sanguinamide A analogues designed to test the relative contributions of β-branching, N-methylation, and side chain size to passive membrane permeability and aqueous solubility. We demonstrate that β-branching has little effect on permeability compared to the effects of aliphatic carbon count and N-methylation of exposed NH groups. We highlight a new N-methylated analogue of sanguinamide A with a Leu substitution at position 2 that exhibits solvent-dependent flexibility and improved permeability over that of the natural product.


Future Medicinal Chemistry | 2015

Beyond cyclosporine A: conformation-dependent passive membrane permeabilities of cyclic peptide natural products

Christopher Ahlbach; Katrina W. Lexa; Andrew T. Bockus; Valerie Chen; Phillip Crews; Matthew P. Jacobson; R. Scott Lokey

Many cyclic peptide natural products are larger and structurally more complex than conventional small molecule drugs. Although some molecules in this class are known to possess favorable pharmacokinetic properties, there have been few reports on the membrane permeabilities of cyclic peptide natural products. Here, we present the passive membrane permeabilities of 39 cyclic peptide natural products, and interpret the results using a computational permeability prediction algorithm based on their known or calculated 3D conformations. We found that the permeabilities of these compounds, measured in a parallel artificial membrane permeability assay, spanned a wide range and demonstrated the important influence of conformation on membrane permeability. These results will aid in the development of these compounds as a viable drug paradigm.

Collaboration


Dive into the R. Scott Lokey's collaboration.

Top Co-Authors

Avatar

Walter M. Bray

University of California

View shared research outputs
Top Co-Authors

Avatar

Cameron R. Pye

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phillip Crews

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge