Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Windey is active.

Publication


Featured researches published by Karen Windey.


Molecular Nutrition & Food Research | 2012

Relevance of protein fermentation to gut health

Karen Windey; Vicky De Preter; Kristin Verbeke

It is generally accepted that carbohydrate fermentation results in beneficial effects for the host because of the generation of short chain fatty acids, whereas protein fermentation is considered detrimental for the hosts health. Protein fermentation mainly occurs in the distal colon, when carbohydrates get depleted and results in the production of potentially toxic metabolites such as ammonia, amines, phenols and sulfides. However, the effectivity of these metabolites has been established mainly in in vitro studies. In addition, some important bowel diseases such as colorectal cancer (CRC) and ulcerative colitis appear most often in the distal colon, which is the primary site of protein fermentation. Finally, epidemiological studies revealed that diets rich in meat are associated with the prevalence of CRC, as is the case in Western society. Importantly, meat intake not only increases fermentation of proteins but also induces increased intake of fat, heme and heterocyclic amines, which may also play a role in the development of CRC. Despite these indications, the relationship between gut health and protein fermentation has not been thoroughly investigated. In this review, the existing evidence about the potential toxicity of protein fermentation from in vitro animal and human studies will be summarized.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity

Sophie Leclercq; Sébastien Matamoros; Patrice D. Cani; Audrey M. Neyrinck; François Jamar; Peter Stärkel; Karen Windey; Valentina Tremaroli; Fredrik Bäckhed; Kristin Verbeke; Philippe de Timary; Nathalie M. Delzenne

Significance Alcohol-dependent subjects frequently develop emotional symptoms that contribute to the persistence of alcohol drinking. These subjects are also characterized by gastrointestinal disturbances. In this study, we showed that alcohol-dependent subjects with altered intestinal permeability had also altered gut-microbiota composition and activity and remained with high scores of depression, anxiety, and alcohol craving after a short-term detoxification program. These results are consistent with the existence of a gut–brain axis in alcohol dependence, in which the gut microbiota could alter the gut-barrier function and influence behavior in alcohol dependence. Therefore, this study opens a previously unidentified field of research for the treatment and the management of alcohol dependence, targeting the gut microbiota. Alcohol dependence has traditionally been considered a brain disorder. Alteration in the composition of the gut microbiota has recently been shown to be present in psychiatric disorders, which suggests the possibility of gut-to-brain interactions in the development of alcohol dependence. The aim of the present study was to explore whether changes in gut permeability are linked to gut-microbiota composition and activity in alcohol-dependent subjects. We also investigated whether gut dysfunction is associated with the psychological symptoms of alcohol dependence. Finally, we tested the reversibility of the biological and behavioral parameters after a short-term detoxification program. We found that some, but not all, alcohol-dependent subjects developed gut leakiness, which was associated with higher scores of depression, anxiety, and alcohol craving after 3 wk of abstinence, which may be important psychological factors of relapse. Moreover, subjects with increased gut permeability also had altered composition and activity of the gut microbiota. These results suggest the existence of a gut–brain axis in alcohol dependence, which implicates the gut microbiota as an actor in the gut barrier and in behavioral disorders. Thus, the gut microbiota seems to be a previously unidentified target in the management of alcohol dependence.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Functional analysis of colonic bacterial metabolism: relevant to health?

Henrike M. Hamer; Vicky De Preter; Karen Windey; Kristin Verbeke

With the use of molecular techniques, numerous studies have evaluated the composition of the intestinal microbiota in health and disease. However, it is of major interest to supplement this with a functional analysis of the microbiota. In this review, the different approaches that have been used to characterize microbial metabolites, yielding information on the functional end products of microbial metabolism, have been summarized. To analyze colonic microbial metabolites, the most conventional way is by application of a hypothesis-driven targeted approach, through quantification of selected metabolites from carbohydrate (e.g., short-chain fatty acids) and protein fermentation (e.g., p-cresol, phenol, ammonia, or H(2)S), secondary bile acids, or colonic enzymes. The application of stable isotope-labeled substrates can provide an elegant solution to study these metabolic pathways in vivo. On the other hand, a top-down approach can be followed by applying metabolite fingerprinting techniques based on (1)H-NMR or mass spectrometric analysis. Quantification of known metabolites and characterization of metabolite patterns in urine, breath, plasma, and fecal samples can reveal new pathways and give insight into physiological regulatory processes of the colonic microbiota. In addition, specific metabolic profiles can function as a diagnostic tool for the identification of several gastrointestinal diseases, such as ulcerative colitis and Crohns disease. Nevertheless, future research will have to evaluate the relevance of associations between metabolites and different disease states.


Molecular Nutrition & Food Research | 2011

The impact of pre- and/or probiotics on human colonic metabolism: Does it affect human health?

Vicky De Preter; Henrike M Hamer; Karen Windey; Kristin Verbeke

Since many years, the role of the colonic microbiota in maintaining the hosts overall health and well-being has been recognized. Dietary modulation of the microbiota composition and activity has been achieved by the use of pre-, pro- and synbiotics. In this review, we will summarize the available evidence on the modification of bacterial metabolism by dietary intervention with pre-, pro- and synbiotics. Enhanced production of SCFA as a marker of increased saccharolytic fermentation is well documented in animal and in vitro studies. Decreased production of potentially toxic protein fermentation metabolites, such as sulfides, phenolic and indolic compounds, has been less frequently demonstrated. Besides, pre-, pro- and synbiotics also affect other metabolic pathways such as the deconjugation of secondary bile acids, bacterial enzyme activities and mineral absorption. Data from human studies are less conclusive. The emergence of new analytical techniques such as metabolite profiling has revealed new pathways affected by dietary intervention. However, an important challenge for current and future research is to relate changes in bacterial metabolism to concrete health benefits. Potential targets and expected benefits have been identified: reduced risk for the metabolic syndrome and prevention of colorectal cancer.


PLOS ONE | 2012

Modulation of Protein Fermentation Does Not Affect Fecal Water Toxicity: A Randomized Cross-Over Study in Healthy Subjects

Karen Windey; Vicky De Preter; Thierry Louat; Frans Schuit; Jean Herman; Greet Vansant; Kristin Verbeke

Objective Protein fermentation results in production of metabolites such as ammonia, amines and indolic, phenolic and sulfur-containing compounds. In vitro studies suggest that these metabolites might be toxic. However, human and animal studies do not consistently support these findings. We modified protein fermentation in healthy subjects to assess the effects on colonic metabolism and parameters of gut health, and to identify metabolites associated with toxicity. Design After a 2-week run-in period with normal protein intake (NP), 20 healthy subjects followed an isocaloric high protein (HP) and low protein (LP) diet for 2 weeks in a cross-over design. Protein fermentation was estimated from urinary p-cresol excretion. Fecal metabolite profiles were analyzed using GC-MS and compared using cluster analysis. DGGE was used to analyze microbiota composition. Fecal water genotoxicity and cytotoxicity were determined using the Comet assay and the WST-1-assay, respectively, and were related to the metabolite profiles. Results Dietary protein intake was significantly higher during the HP diet compared to the NP and LP diet. Urinary p-cresol excretion correlated positively with protein intake. Fecal water cytotoxicity correlated negatively with protein fermentation, while fecal water genotoxicity was not correlated with protein fermentation. Heptanal, 3-methyl-2-butanone, dimethyl disulfide and 2-propenyl ester of acetic acid are associated with genotoxicity and indole, 1-octanol, heptanal, 2,4-dithiapentane, allyl-isothiocyanate, 1-methyl-4-(1-methylethenyl)-benzene, propionic acid, octanoic acid, nonanoic acid and decanoic acid with cytotoxicity. Conclusion This study does not support a role of protein fermentation in gut toxicity. The identified metabolites can provide new insight into colonic health. Trial Registration ClinicalTrial.gov NCT01280513


Molecular Nutrition & Food Research | 2010

The prebiotic, oligofructose-enriched inulin modulates the faecal metabolite profile: An in vitro analysis

Vicky De Preter; Gwen Falony; Karen Windey; Henrike M Hamer; Luc De Vuyst; Kristin Verbeke

SCOPE Health benefits of prebiotic administration have been judged mainly from the increased numbers of bifidobacteria and the enhanced production of short-chain fatty acids in the colon. Only a few studies have focused on the capacity of prebiotics to decrease the proteolytic fermentation, which might contribute to health as well. METHODS AND RESULTS The influence of the prebiotic oligofructose-enriched inulin (OF-IN) on the pattern of volatile organic compounds was characterized using an in vitro faecal model. Faecal slurries, obtained from healthy subjects, were anaerobically incubated at 37 °C with and without different doses of OF-IN (2.5, 5, 10, or 20 mg) and changes in the metabolite pattern and pH were evaluated. A total of 107 different volatile organic compounds were identified and classified according to their chemical classes. The concentration of esters and acids significantly increased with increasing doses of OF-IN. Similar effects were observed for some aldehydes. To the contrary, OF-IN dose-dependently inhibited the formation of S-compounds. Also, the generation of other protein fermentation metabolites such as phenolic compounds was inhibited in the presence of OF-IN. CONCLUSION Our results confirmed a clear dose-dependent stimulation of saccharolytic fermentation. Importantly, a significant decrease in toxic protein fermentation metabolites such as sulphides attended these effects.


Journal of The American Society of Nephrology | 2016

The Influence of CKD on Colonic Microbial Metabolism

Ruben Poesen; Karen Windey; E. Neven; Dirk Kuypers; V. De Preter; Patrick Augustijns; P. DHaese; Pieter Evenepoel; Kristin Verbeke; B. Meijers

There is increasing interest in the colonic microbiota as a relevant source of uremic retention solutes accumulating in CKD. Renal disease can also profoundly affect the colonic microenvironment and has been associated with a distinct colonic microbial composition. However, the influence of CKD on the colonic microbial metabolism is largely unknown. Therefore, we studied fecal metabolite profiles of hemodialysis patients and healthy controls using a gas chromatography-mass spectrometry method. We observed a clear discrimination between both groups, with 81 fecal volatile organic compounds detected at significantly different levels in hemodialysis patients and healthy controls. To further explore the differential impact of renal function loss per se versus the effect of dietary and other CKD-related factors, we also compared fecal metabolite profiles between patients on hemodialysis and household contacts on the same diet, which revealed a close resemblance. In contrast, significant differences were noted between the fecal samples of rats 6 weeks after 5/6th nephrectomy and those of sham-operated rats, still suggesting an independent influence of renal function loss. Thus, CKD associates with a distinct colonic microbial metabolism, although the effect of renal function loss per se in humans may be inferior to the effects of dietary and other CKD-related factors. The potential beneficial effect of therapeutics targeting colonic microbiota in patients with CKD remains to be examined.


Inflammatory Bowel Diseases | 2012

Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway

Vicky De Preter; Ingrid Arijs; Karen Windey; Wiebe Vanhove; Severine Vermeire; Frans Schuit; Paul Rutgeerts; Kristin Verbeke

Background: In ulcerative colitis (UC) butyrate metabolism is impaired due to a defect in the butyrate oxidation pathway and/or transport. In the present study we correlated butyrate uptake and oxidation to the gene expression of the butyrate transporter SLC16A1 and the enzymes involved in butyrate oxidation (ACSM3, ACADS, ECHS1, HSD17B10, and ACAT2) in UC and controls. Methods: Colonic mucosal biopsies were collected during endoscopy of 88 UC patients and 20 controls with normal colonoscopy. Butyrate uptake and oxidation was measured by incubating biopsies with 14C‐labeled Na‐butyrate. To assess gene expression, total RNA from biopsies was used for quantitative reverse‐transcription polymerase chain reaction (qRT‐PCR). In 20 UC patients, gene expression was reassessed after treatment with infliximab. Results: Butyrate uptake and oxidation were significantly decreased in UC versus controls (P < 0.001 for both). Butyrate oxidation remained significantly reduced in UC after correction for butyrate uptake (P < 0.001), suggesting that the butyrate oxidation pathway itself is also affected. Also, the mucosal gene expression of SLC16A1, ACSM3, ACADS, ECHS1, HSD17B10, and ACAT2 was significantly decreased in UC as compared with controls (P < 0.001 for all). In a subgroup of patients (n = 20), the gene expression was reassessed after infliximab therapy. In responders to therapy, a significant increase in gene expression was observed. Nevertheless, only ACSM3 mRNA levels returned to control values after therapy in the responders groups. Conclusions: The deficiency in the colonic butyrate metabolism in UC is initiated at the gene expression level and is the result of a decreased expression of SLC16A1 and enzymes in the &bgr;‐oxidation pathway of butyrate. (Inflamm Bowel Dis 2012;)


Inflammatory Bowel Diseases | 2012

Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis

Vicky De Preter; Ingrid Arijs; Karen Windey; Wiebe Vanhove; Severine Vermeire; Frans Schuit; Paul Rutgeerts; Kristin Verbeke

Background: Defective detoxification of sulfides leads to damage to the mucosa and may play a role in the etiology of ulcerative colitis (UC). The colonic mucosal thiosulfate sulfurtransferase (TST) enzyme removes H2S by conversion to the less toxic thiocyanate. In this study we measured colonic mucosal TST enzyme activity and gene expression in UC and controls. In addition, the influence of sulfides on butyrate oxidation was evaluated. Methods: Colonic mucosal biopsies were collected from 92 UC patients and 24 controls. TST activity was measured spectrophotometrically. To assess gene expression, total RNA from biopsies was used for quantitative reverse‐transcription polymerase chain reaction (RT‐PCR). In 20 UC patients, gene expression was reassessed after their first treatment with infliximab. To evaluate the effect of sulfides on butyrate oxidation, biopsies were incubated with 1.5 mM NaHS. Results: TST enzyme activity and gene expression were significantly decreased in UC patients vs. controls (P < 0.001). UC patients, classified into disease activity subgroups, showed a significantly decreased TST activity and gene expression in the subgroups as compared to healthy subjects (P < 0.05 for all). In 20 patients, gene expression was reassessed after their first infliximab therapy. In responders to infliximab, a significant increase in TST gene expression was observed. However, TST mRNA levels did not return to control values after therapy in the responders. In controls, but not in UC, sulfide significantly decreased butyrate oxidation. Conclusions: We found an impaired detoxification mechanism of sulfide at TST protein and RNA level in UC. Inflammation was clearly associated with the observed TST deficiency. (Inflamm Bowel Dis 2012;)


PLOS ONE | 2015

The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites

Ruben Poesen; Henricus A. M. Mutsaers; Karen Windey; Petra van den Broek; Vivienne Verweij; Patrick Augustijns; Dirk Kuypers; Jitske Jansen; Pieter Evenepoel; Kristin Verbeke; Björn Meijers; Rosalinde Masereeuw

Although there has been increasing interest in the use of high protein diets, little is known about dietary protein related changes in the mammalian metabolome. We investigated the influence of protein intake on selected tryptophan and phenolic compounds, derived from both endogenous and colonic microbial metabolism. Furthermore, potential inter-species metabolic differences were studied. For this purpose, 29 healthy subjects were allocated to a high (n = 14) or low protein diet (n = 15) for 2 weeks. In addition, 20 wild-type FVB mice were randomized to a high protein or control diet for 21 days. Plasma and urine samples were analyzed with liquid chromatography–mass spectrometry for measurement of tryptophan and phenolic metabolites. In human subjects, we observed significant changes in plasma level and urinary excretion of indoxyl sulfate (P 0.004 and P 0.001), and in urinary excretion of indoxyl glucuronide (P 0.01), kynurenic acid (P 0.006) and quinolinic acid (P 0.02). In mice, significant differences were noted in plasma tryptophan (P 0.03), indole-3-acetic acid (P 0.02), p-cresyl glucuronide (P 0.03), phenyl sulfate (P 0.004) and phenylacetic acid (P 0.01). Thus, dietary protein intake affects plasma levels and generation of various mammalian metabolites, suggesting an influence on both endogenous and colonic microbial metabolism. Metabolite changes are dissimilar between human subjects and mice, pointing to inter-species metabolic differences with respect to protein intake.

Collaboration


Dive into the Karen Windey's collaboration.

Top Co-Authors

Avatar

Kristin Verbeke

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Vicky De Preter

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Greet Vandermeulen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eef Boets

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Els Houben

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Leen Boesmans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jean Herman

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lise Deroover

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Thierry Louat

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guy Van den Mooter

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge