Kari Merete Ersland
Haukeland University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kari Merete Ersland.
PLOS ONE | 2012
Kari Merete Ersland; Andrea Christoforou; Christine Stansberg; Thomas Espeseth; Manuel Mattheisen; Morten Mattingsdal; Gudmundur A. Hardarson; Thomas V O Hansen; Carla P. D. Fernandes; Sudheer Giddaluru; René Breuer; Jana Strohmaier; Srdjan Djurovic; Markus M. Nöthen; Marcella Rietschel; Astri J. Lundervold; Thomas Werge; Sven Cichon; Ole A. Andreassen; Ivar Reinvang; Vidar M. Steen; Stephanie Le Hellard
Background Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes in three different cortical areas (frontomedial, temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n = 3 samples) and bipolar affective disorder (BP) (n = 3 samples), to which cognitive impairment is linked. Principal Findings At the single gene level, the temporal cortex enriched gene RAR-related orphan receptor B (RORB) showed the strongest overall association, namely to a test of verbal intelligence (Vocabulary, P = 7.7E-04). We also applied gene set enrichment analysis (GSEA) to test the candidate genes, as gene sets, for enrichment of association signal in the NCNG GWAS and in GWASs of BP and of SCZ. We found that genes differentially expressed in the temporal cortex showed a significant enrichment of association signal in a test measure of non-verbal intelligence (Reasoning) in the NCNG sample. Conclusion Our gene-based approach suggests that RORB could be involved in verbal intelligence differences, while the genes enriched in the temporal cortex might be important to intellectual functions as measured by a test of reasoning in the healthy population. These findings warrant further replication in independent samples on cognitive traits.
PLOS ONE | 2013
Vidar M. Steen; Chirag Nepal; Kari Merete Ersland; Rita Holdhus; Marianne Nævdal; Siri M. Ratvik; Silje Skrede; Bjarte Håvik
Recent meta-analyses of schizophrenia genome-wide association studies (GWASs) have identified the CUB and SUSHI multiple domains 1 (CSMD1) gene as a statistically strong risk factor. CSMD1 is a complement control-related protein suggested to inhibit the classical complement pathway, being expressed in developing neurons. However, expression of CSMD1 is largely uncharacterized and relevance for behavioral phenotypes is not previously demonstrated. Here, we assess neuropsychological behaviors of a Csmd1 knockout (KO) mouse in a selection of standard behavioral tests. Deregulation of neuropsychological responses were observed in both the open field and the elevated plus maze tests, in which KO mice spent 55% and 33% less time than WT littermate mice in open areas, respectively. Altered behaviors were also observed in tail suspension and to higher acoustic stimuli, for which Csmd1 KO mice showed helplessness and moderate increase in startle amplitude, respectively. Furthermore, Csmd1 KO mice also displayed increased weight-gain and glucose tolerance, similar to a major phenotype of the metabolic syndrome that also has been associated to the human CSMD1 locus. Consistent with a role in the control of behaviors, Csmd1 was found highly expressed in the central nervous system (CNS), and with some expression in visceral fat and ovary, under tissue-specific control by a novel promoter-associated lncRNA. In summary, disruption of Csmd1 induces behaviors reminiscent of blunted emotional responses, anxiety and depression. These observations suggest an influence of the CSMD1 schizophrenia susceptibility gene on psychopathology and endophenotypes of the negative symptom spectra.
PLOS ONE | 2013
Carla P. D. Fernandes; Andrea Christoforou; Sudheer Giddaluru; Kari Merete Ersland; Srdjan Djurovic; Manuel Mattheisen; Astri J. Lundervold; Ivar Reinvang; Markus M. Nöthen; Marcella Rietschel; Roel A. Ophoff; Albert Hofman; André G. Uitterlinden; Thomas Werge; S. Cichon; Thomas Espeseth; Ole A. Andreassen; Vidar M. Steen; Stephanie Le Hellard
Background Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals and in the dysfunction observed in psychiatric disorders. Methods Sets of genes associated with a range of cognitive functions often impaired in schizophrenia and bipolar disorder were generated from a genome-wide association study (GWAS) on a sample comprising 670 healthy Norwegian adults who were phenotyped for a broad battery of cognitive tests. These gene sets were then tested for enrichment of association in GWASs of schizophrenia and bipolar disorder. The GWAS data was derived from three independent single-centre schizophrenia samples, three independent single-centre bipolar disorder samples, and the multi-centre schizophrenia and bipolar disorder samples from the Psychiatric Genomics Consortium. Results The strongest enrichments were observed for visuospatial attention and verbal abilities sets in bipolar disorder. Delayed verbal memory was also enriched in one sample of bipolar disorder. For schizophrenia, the strongest evidence of enrichment was observed for the sets of genes associated with performance in a colour-word interference test and for sets associated with memory learning slope. Conclusions Our results are consistent with the increasing evidence that cognitive functions share genetic factors with schizophrenia and bipolar disorder. Our data provides evidence that genetic studies using polygenic and pleiotropic models can be used to link specific cognitive functions with psychiatric disorders.
BMC Neuroscience | 2011
Christine Stansberg; Kari Merete Ersland; Paul van der Valk; Vidar M. Steen
BackgroundThe six-layered neocortex of the mammalian brain may appear largely homologous, but is in reality a modular structure of anatomically and functionally distinct areas. However, global gene expression seems to be almost identical across the cerebral cortex and only a few genes have so far been reported to show regional enrichment in specific cortical areas.ResultsIn the present study on adult rat brain, we have corroborated the strikingly similar gene expression among cortical areas. However, differential expression analysis has allowed for the identification of 30, 24 and 11 genes enriched in frontomedial -, temporal- or occipital cortex, respectively. A large proportion of these 65 genes appear to be involved in signal transduction, including the ion channel Fxyd6, the neuropeptide Grp and the nuclear receptor Rorb. We also find that the majority of these genes display increased expression levels around birth and show distinct preferences for certain cortical layers and cell types in rodents.ConclusionsSince specific patterns of expression often are linked to equally specialised biological functions, we propose that these cortex sub-region enriched genes are important for proper functioning of the cortical regions in question.
PLOS ONE | 2012
Bjarte Håvik; Franziska Degenhardt; Stefan Johansson; Carla P. D. Fernandes; Anke Hinney; André Scherag; Helle Lybæk; Srdjan Djurovic; Andrea Christoforou; Kari Merete Ersland; Sudheer Giddaluru; Michael Conlon O'Donovan; Michael John Owen; Nicholas John Craddock; Thomas W. Mühleisen; Manuel Mattheisen; Benno G. Schimmelmann; Tobias J. Renner; Andreas Warnke; Beate Herpertz-Dahlmann; Judith Sinzig; Özgür Albayrak; Marcella Rietschel; Markus M. Nöthen; Clive R. Bramham; Thomas Werge; Johannes Hebebrand; Jan Haavik; Ole A. Andreassen; Sven Cichon
Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4×10−5 and 4×10−6, respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3′UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity.
European Neuropsychopharmacology | 2015
Johan Fernø; Kari Merete Ersland; I.H. Duus; I. González-García; K.O. Fossan; Rolf K. Berge; Vidar M. Steen; Silje Skrede
Treatment with second-generation antipsychotic agents such as olanzapine frequently results in metabolic adverse effects, e.g. hyperphagia, weight gain and dyslipidaemia in patients of both genders. The molecular mechanisms underlying metabolic adverse effects are still largely unknown, and studies in rodents represent an important approach in their exploration. However, the validity of the rodent model is hampered by the fact that antipsychotics induce weight gain in female, but not male, rats. When administered orally, the short half-life of olanzapine in rats prevents stable plasma concentrations of the drug. We recently showed that a single intramuscular injection of long-acting olanzapine formulation yields clinically relevant plasma concentrations accompanied by several dysmetabolic features in the female rat. In the current study, we show that depot injections of 100-250 mg/kg olanzapine yielded clinically relevant plasma olanzapine concentrations also in male rats. In spite of transient hyperphagia, however, olanzapine resulted in weight loss rather than weight gain. The resultant negative feed efficiency was accompanied by a slight elevation of thermogenesis markers in brown adipose tissue for the highest olanzapine dose, but the olanzapine-related reduction in weight gain remains to be explained. In spite of the absence of weight gain, an olanzapine dose of 200mg/kg or above induced significantly elevated plasma cholesterol levels and pronounced activation of lipogenic gene expression in the liver. These results confirm that olanzapine stimulates lipogenic effects, independent of weight gain, and raise the possibility that endocrine factors may influence gender specificity of metabolic effects of antipsychotics in the rat.
American Journal of Human Genetics | 2017
Thandiswa Ngcungcu; Martin Oti; Jan C. Sitek; Bjørn Ivar Haukanes; Bolan Linghu; Robert Bruccoleri; Tomasz Stokowy; Fan Yang; Jiang Zhu; Marc Sultan; Joost Schalkwijk; Ivonne M.J.J. van Vlijmen-Willems; Charlotte von der Lippe; Han G. Brunner; Kari Merete Ersland; Wayne Grayson; Stine Buechmann-Moller; Olav Sundnes; Nanguneri Nirmala; Thomas Morgan; Hans van Bokhoven; Vidar M. Steen; Peter R. Hull; Joseph D. Szustakowski; Frank Staedtler; Huiqing Zhou; Torunn Fiskerstrand; Michele Ramsay
Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals.
Journal of Psychopharmacology | 2015
Kari Merete Ersland; Silje Skrede; Therese H. Røst; Rolf K. Berge; Vidar M. Steen
Several antipsychotics have well-known adverse metabolic effects. Studies uncovering molecular mechanisms of such drugs in patients are challenging due to high dropout rates, previous use of antipsychotics and restricted availability of biological samples. Rat experiments, where previously unexposed animals are treated with antipsychotics, allow for direct comparison of different drugs, but have been hampered by the short half-life of antipsychotics in rodents. The use of long-acting formulations of antipsychotics could significantly increase the value of rodent models in the molecular characterization of therapeutic and adverse effects of these agents. However, as long-acting formulations have rarely been used in rodents, there is a need to characterize the basic metabolic phenotype of different antipsychotics. Using long-acting olanzapine injections as a positive control, the metabolic effects of intramuscular long-acting risperidone in female rats were investigated for the first time. Like olanzapine, risperidone induced rapid, significant hyperphagia and weight gain, with concomitant increase in several plasma lipid species. Both drugs also induced weight-independent upregulation of several genes encoding enzymes involved in lipogenesis, but this activation was not confirmed at the protein level. Our findings shed light on the role of drug administration, drug dose and nutritional status in the development of rodent models for adverse metabolic effects of antipsychotic agents.
Gene | 2008
Anna R. Angotzi; Kari Merete Ersland; Sutada Mungpakdee; Sigurd O. Stefansson; Daniel Chourrout
Several transcription regulators play key roles during pituitary morphogenesis. Well known intrinsic signals of the adenohypophysis such as the K(50)paired-like homeodomain proteins regulate commitment, proliferation, differential specification and maintenance of adenohypophyseal cells. We have cloned and successively characterized the mRNA localization of three pitx gene-pairs and three of their splice variants in salmon, pitx1alpha, pitx1beta; pitx2alpha, pitx2beta; pitx3alpha, pitx3beta; pitx1alphash, pitx1betash and pitx2alphaA. The high level of conservation between the pitx paralog-pairs indicates that they likely arose from lineage-specific genome duplication. We also report the isolation of a pitx1 gene in zebrafish. Comparative ISH studies of zebrafish, salmon and mouse pitx genes indicate both conservation and divergence of spatial expression domains in vertebrates. Significant differences were observed between the expressions of pitx orthologs during pituitary development. We suggest that the ancestral pituitary expression at early and late events of morphogenesis is preserved in different species through complementary shuffling of expression between the distinct pitx members of the family. Moreover, ISH analysis of the pitx salmon repertoire shows rapid evolution in this lineage, differences in spatio-temporal expression are observed between gene duplicates.
BMC Neuroscience | 2013
Kari Merete Ersland; Bjarte Håvik; Johanne Egge Rinholm; Vidar Gundersen; Christine Stansberg; Vidar M. Steen
BackgroundThe neocortex is a highly specialised and complex brain structure, involved in numerous tasks, ranging from processing and interpretation of somatosensory information, to control of motor functions. The normal function linked to distinct neocortical areas might involve control of highly specific gene expression, and in order to identify such regionally enriched genes, we previously analysed the global gene expression in three different cortical regions (frontomedial, temporal and occipital cortex) from the adult rat brain. We identified distinct sets of differentially expressed genes. One of these genes, namely the hypothetical protein LOC689986 (LOC689986), was of particular interest, due to an almost exclusive expression in the temporal cortex.ResultsDetailed analysis of LOC689986 in the adult rat brain confirmed the expression in confined areas of parieto-temporal cortex, and revealed highly specific expression in layer 4 of the somatosensory cortex, with sharp borders towards the neighbouring motor cortex. In addition, LOC689986 was found to be translated in vivo, and was detected in the somatosensory cortex and in the Purkinje cells of the cerebellar cortex. The protein was present in neuronal dendrites and also in astrocyte cells. Finally, this unique gene is apparently specific for, and highly conserved in, the vertebrate lineage.ConclusionsIn this study, we have partially characterised the highly conserved LOC689986 gene, which is specific to the vertebrate linage. The gene displays a distinct pattern of expression in layer 4 of the somatosensory cortex, and areas of the parieto-temporal cortex in rodents.