Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin A. Forney is active.

Publication


Featured researches published by Karin A. Forney.


Conservation Biology | 2013

Assessing the Risk of Ships Striking Large Whales in Marine Spatial Planning

J. V. Redfern; Megan F. McKenna; T. J. Moore; John Calambokidis; Monica DeAngelis; Elizabeth A. Becker; Jay Barlow; Karin A. Forney; Paul C. Fiedler; Susan J. Chivers

Marine spatial planning provides a comprehensive framework for managing multiple uses of the marine environment and has the potential to minimize environmental impacts and reduce conflicts among users. Spatially explicit assessments of the risks to key marine species from human activities are a requirement of marine spatial planning. We assessed the risk of ships striking humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (Balaenoptera physalus) whales in alternative shipping routes derived from patterns of shipping traffic off Southern California (U.S.A.). Specifically, we developed whale-habitat models and assumed ship-strike risk for the alternative shipping routes was proportional to the number of whales predicted by the models to occur within each route. This definition of risk assumes all ships travel within a single route. We also calculated risk assuming ships travel via multiple routes. We estimated the potential for conflict between shipping and other uses (military training and fishing) due to overlap with the routes. We also estimated the overlap between shipping routes and protected areas. The route with the lowest risk for humpback whales had the highest risk for fin whales and vice versa. Risk to both species may be ameliorated by creating a new route south of the northern Channel Islands and spreading traffic between this new route and the existing route in the Santa Barbara Channel. Creating a longer route may reduce the overlap between shipping and other uses by concentrating shipping traffic. Blue whales are distributed more evenly across our study area than humpback and fin whales; thus, risk could not be ameliorated by concentrating shipping traffic in any of the routes we considered. Reducing ship-strike risk for blue whales may be necessary because our estimate of the potential number of strikes suggests that they are likely to exceed allowable levels of anthropogenic impacts established under U.S. laws.


Ecosphere | 2011

Large‐scale movements and high‐use areas of western Pacific leatherback turtles, Dermochelys coriacea

Scott R. Benson; Tomoharu Eguchi; D. G. Foley; Karin A. Forney; Helen Bailey; Creusa Hitipeuw; Betuel Samber; Ricardo F. Tapilatu; Vagi Rei; Peter Ramohia; John Pita; Peter H. Dutton

The western Pacific leatherback turtle (Dermochelys coriacea), one of three genetically distinct stocks in the Indo-Pacific region, has declined markedly during past decades. This metapopulation nests year-round at beaches of several western Pacific island nations and has been documented through genetic analysis and telemetry studies to occur in multiple regions of the Pacific Ocean. To provide a large-scale perspective of their movements, high-use areas, and habitat associations, we report and synthesize results of 126 satellite telemetry deployments conducted on leatherbacks at western Pacific nesting beaches and at one eastern Pacific foraging ground during 2000-2007. A Bayesian switching state-space model was applied to raw Argos-acquired surface locations to estimate daily positions and behavioral mode (either transiting or area-restricted search) for each turtle. Monthly areas of high use were identified for post- nesting periods using kernel density estimation. There was a clear separation of migratory destinations for boreal summer vs. boreal winter nesters. Leatherbacks that nested during boreal summer moved into Large Marine Ecosystems (LMEs) of the temperate North Pacific Ocean or into tropical waters of the South China Sea. Turtles that nested during boreal winter moved into temperate and tropical LMEs of the southern hemisphere. Area-restricted search occurred in temperate and tropical waters at diverse pelagic and coastal regions exhibiting a wide range of oceanographic features, including mesoscale eddies, coastal retention areas, current boundaries, or stationary fronts, all of which are known mechanisms for aggregating leatherback prey. Use of the most distant and temperate foraging ground, the California Current LME, required a 10-12 month trans-Pacific migration and commonly involved multiple years of migrating between high-latitude summer foraging grounds and low-latitude eastern tropical Pacific wintering areas without returning to western Pacific nesting beaches. In contrast, tropical foraging destinations were reached within 5-7 months and appeared to support year-round foraging, potentially allowing a more rapid return to nesting beaches. Based on these observations, we hypothesize that demographic differences are likely among nesting females using different LMEs of the Indo-Pacific. The differences in movements and foraging strategies underscore the importance of and the need for ecosystem-based management and coordinated Pacific-wide conservation efforts.


Remote Sensing | 2016

Moving Towards Dynamic Ocean Management: How Well Do Modeled Ocean Products Predict Species Distributions?

Elizabeth A. Becker; Karin A. Forney; Paul C. Fiedler; Jay Barlow; Susan J. Chivers; Christopher A. Edwards; Andrew M. Moore; Jessica V. Redfern

Species distribution models are now widely used in conservation and management to predict suitable habitat for protected marine species. The primary sources of dynamic habitat data have been in situ and remotely sensed oceanic variables (both are considered “measured data”), but now ocean models can provide historical estimates and forecast predictions of relevant habitat variables such as temperature, salinity, and mixed layer depth. To assess the performance of modeled ocean data in species distribution models, we present a case study for cetaceans that compares models based on output from a data assimilative implementation of the Regional Ocean Modeling System (ROMS) to those based on measured data. Specifically, we used seven years of cetacean line-transect survey data collected between 1991 and 2009 to develop predictive habitat-based models of cetacean density for 11 species in the California Current Ecosystem. Two different generalized additive models were compared: one built with a full suite of ROMS output and another built with a full suite of measured data. Model performance was assessed using the percentage of explained deviance, root mean squared error (RMSE), observed to predicted density ratios, and visual inspection of predicted and observed distributions. Predicted distribution patterns were similar for models using ROMS output and measured data, and showed good concordance between observed sightings and model predictions. Quantitative measures of predictive ability were also similar between model types, and RMSE values were almost identical. The overall demonstrated success of the ROMS-based models opens new opportunities for dynamic species management and biodiversity monitoring because ROMS output is available in near real time and can be forecast.


Journal of Applied Ecology | 2017

WhaleWatch: a dynamic management tool for predicting blue whale density in the California Current

Elliott L. Hazen; Daniel M. Palacios; Karin A. Forney; Evan A. Howell; Elizabeth A. Becker; Aimee L. Hoover; Ladd Irvine; Monica DeAngelis; Steven J. Bograd; Bruce R. Mate; Helen Bailey

Summary Management of highly migratory species is reliant on spatially and temporally explicit information on their distribution and abundance. Satellite telemetry provides time-series data on individual movements. However, these data are underutilized in management applications in part because they provide presence-only information rather than abundance information such as density. Eastern North Pacific blue whales are listed as threatened, and ship strikes have been suggested as a key factor limiting their recovery. Here, we developed a satellite-telemetry-based habitat model in a case–control design for Eastern North Pacific blue whales Balaenoptera musculus that was combined with previously published abundance estimates to predict habitat preference and densities. Further, we operationalize an automated, near-real-time whale density prediction tool based on up-to-date environmental data for use by managers and other stakeholders. A switching state-space movement model was applied to 104 blue whale satellite tracks from 1994 to 2008 to account for errors in the location estimates and provide daily positions (case points). We simulated positions using a correlated random walk model (control points) and sampled the environment at each case and control point. Generalized additive mixed models and boosted regression trees were applied to determine the probability of occurrence based on environmental covariates. Models were used to predict 8-day and monthly resolution, year-round density estimates scaled by population abundance estimates that provide a critical tool for understanding seasonal and interannual changes in habitat use. The telemetry-based habitat model predicted known blue whale hot spots and had seasonal agreement with sightings data, highlighting the skill of the model for predicting blue whale habitat preference and density. We identified high interannual variability in occurrence emphasizing the benefit of dynamic models compared to multiyear averages. Synthesis and applications. This near-real-time tool allows a more accurate examination of the year-round spatio-temporal overlap of blue whales with potentially harmful human activities, such as shipping. This approach should also be applicable to other species for which sufficient telemetry data are available. The dynamic predictive product developed here is an important tool that allows managers to consider finer-scale management areas that are more economically feasible and socially acceptable.


PLOS ONE | 2015

Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework

Mario A. Pardo; Tim Gerrodette; Emilio Beier; Diane Gendron; Karin A. Forney; Susan J. Chivers; Jay Barlow; Daniel M. Palacios

We inferred the population densities of blue whales (Balaenoptera musculus) and short-beaked common dolphins (Delphinus delphis) in the Northeast Pacific Ocean as functions of the water-column’s physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT). Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge). Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more southern portion of the Humboldt Current System. We posit that such reductions in available foraging habitats during climatic disturbances could incur high energetic costs on these populations, ultimately affecting individual fitness and survival.


PLOS ONE | 2014

Accounting for Subgroup Structure in Line-Transect Abundance Estimates of False Killer Whales ( Pseudorca crassidens ) in Hawaiian Waters

Amanda L. Bradford; Karin A. Forney; Erin M. Oleson; Jay Barlow

For biological populations that form aggregations (or clusters) of individuals, cluster size is an important parameter in line-transect abundance estimation and should be accurately measured. Cluster size in cetaceans has traditionally been represented as the total number of individuals in a group, but group size may be underestimated if group members are spatially diffuse. Groups of false killer whales (Pseudorca crassidens) can comprise numerous subgroups that are dispersed over tens of kilometers, leading to a spatial mismatch between a detected group and the theoretical framework of line-transect analysis. Three stocks of false killer whales are found within the U.S. Exclusive Economic Zone of the Hawaiian Islands (Hawaiian EEZ): an insular main Hawaiian Islands stock, a pelagic stock, and a Northwestern Hawaiian Islands (NWHI) stock. A ship-based line-transect survey of the Hawaiian EEZ was conducted in the summer and fall of 2010, resulting in six systematic-effort visual sightings of pelagic (n = 5) and NWHI (n = 1) false killer whale groups. The maximum number and spatial extent of subgroups per sighting was 18 subgroups and 35 km, respectively. These sightings were combined with data from similar previous surveys and analyzed within the conventional line-transect estimation framework. The detection function, mean cluster size, and encounter rate were estimated separately to appropriately incorporate data collected using different methods. Unlike previous line-transect analyses of cetaceans, subgroups were treated as the analytical cluster instead of groups because subgroups better conform to the specifications of line-transect theory. Bootstrap values (n = 5,000) of the line-transect parameters were randomly combined to estimate the variance of stock-specific abundance estimates. Hawai’i pelagic and NWHI false killer whales were estimated to number 1,552 (CV = 0.66; 95% CI = 479–5,030) and 552 (CV = 1.09; 95% CI = 97–3,123) individuals, respectively. Subgroup structure is an important factor to consider in line-transect analyses of false killer whales and other species with complex grouping patterns.


Frontiers in Marine Science | 2017

Projecting marine mammal distribution in a changing climate

Gregory K. Silber; Matthew D. Lettrich; Peter O. Thomas; Jason D. Baker; Mark F. Baumgartner; Elizabeth A. Becker; Peter L. Boveng; Dorothy M. Dick; Jerome Fiechter; Jaume Forcada; Karin A. Forney; Roger B. Griffis; Jonathan A. Hare; Alistair J. Hobday; Daniel Howell; Kristin L. Laidre; Nate Mantua; Lori T. Quakenbush; Jarrod A. Santora; Kathleen M. Stafford; Paul D. Spencer; Charles A. Stock; William J. Sydeman; Kyle S. Van Houtan; Robin S. Waples

Climate-related shifts in marine mammal range and distribution have been observed in some populations; however, the nature and magnitude of future responses are uncertain in novel environments projected under climate change. This poses a challenge for agencies charged with management and conservation of these species. Specialized diets, restricted ranges, or reliance on specific substrates or sites (e.g., for pupping) make many marine mammal populations particularly vulnerable to climate change. High-latitude, predominantly ice-obligate, species have experienced some of the largest changes in habitat and distribution and these are expected to continue. Efforts to predict and project marine mammal distributions to date have emphasized data-driven statistical habitat models. These have proven successful for short time-scale (e.g., seasonal) management activities, but confidence that such relationships will hold for multi-decade projections and novel environments is limited. Recent advances in mechanistic modeling of marine mammals (i.e., models that rely on robust physiological and ecological principles expected to hold under climate change) may address this limitation. The success of such approaches rests on continued advances in marine mammal ecology, behavior, and physiology together with improved regional climate projections. The broad scope of this challenge suggests initial priorities be placed on vulnerable species or populations (those already experiencing declines or projected to undergo ecological shifts resulting from climate changes that are consistent across climate projections) and species or populations for which ample data already exist (with the hope that these may inform climate change sensitivities in less well observed species or populations elsewhere). The sustained monitoring networks, novel observations, and modeling advances required to more confidently project marine mammal distributions in a changing climate will ultimately benefit management decisions across time-scales, further promoting the resilience of marine mammal populations.


Frontiers in Marine Science | 2017

Habitat-Based Density Models for Three Cetacean Species off Southern California Illustrate Pronounced Seasonal Differences

Elizabeth A. Becker; Karin A. Forney; Bruce J. Thayre; Amanda J. Debich; Gregory S. Campbell; Katherine Whitaker; Annie B. Douglas; Anita Gilles; Ryan Hoopes; John A. Hildebrand

Managing marine species effectively requires spatially and temporally explicit knowledge of their density and distribution. Habitat-based density models, a type of species distribution model (SDM) that uses habitat covariates to estimate species density and distribution patterns, are increasingly used for marine management and conservation because they provide a tool for assessing potential impacts (e.g., from fishery bycatch, ship strikes, anthropogenic sound) over a variety of spatial and temporal scales. The abundance and distribution of many pelagic species exhibit substantial seasonal variability, highlighting the importance of predicting density specific to the season of interest. This is particularly true in dynamic regions like the California Current, where significant seasonal shifts in cetacean distribution have been documented at coarse scales. Finer scale (10 km) habitat-based density models were previously developed for many cetacean species occurring in this region, but most models were limited to summer/fall. The objectives of our study were two-fold: 1) develop spatially-explicit density estimates for winter/spring to support management applications, and 2) compare model-predicted density and distribution patterns to previously developed summer/fall model results in the context of species ecology. We used a well-established Generalized Additive Modeling framework to develop cetacean SDMs based on 20 California Cooperative Oceanic Fisheries Investigations (CalCOFI) shipboard surveys conducted during winter and spring between 2005 and 2015. Models were fit for short-beaked common dolphin (Delphinus delphis delphis), Dall’s porpoise (Phocoenoides dalli), and humpback whale (Megaptera novaeangliae). Model performance was evaluated based on a variety of established metrics, including the percentage of explained deviance, ratios of observed to predicted density, and visual inspection of predicted and observed distributions. Final models were used to produce spatial grids of average species density and spatially-explicit measures of uncertainty. Results provide the first fine scale (10 km) density predictions for these species during the cool seasons and reveal distribution patterns that are markedly different from summer/fall, thus providing novel insights into species ecology and quantitative data for the seasonal assessment of potential anthropogenic impacts.


Archive | 2015

Revised stock boundaries for false killer whales (Pseudorca crassidens) in Hawaiian waters

Amanda L. Bradford; Erin M. Oleson; Robin W. Baird; Christofer H. Boggs; Karin A. Forney; Nancy C. Young

......................................................................................................................................... ii


Journal of the Acoustical Society of America | 2018

Temporal variations in humpback whale (Megaptera novaeangliae) song in Monterey Bay National Marine Sanctuary, northeast Pacific

John P. Ryan; Danelle E. Cline; John E. Joseph; Tetyana Margolina; Alison K. Stimpert; Karin A. Forney; Nancy Black; Andrew P. DeVogelaere; Mark Fischer; Christopher Wahl; Francisco P. Chavez

Using two years of nearly continuous recordings from Monterey Bay National Marine Sanctuary, August 2015 through July 2017, variations in humpback whale song are examined on diel, seasonal, and interannual time scales. The cabled hydrophone is in humpback feeding and migratory habitat at 36.7128°N, 122.186°W. Diel analyses show 69% of song during night, 23% during day, and 8% during dusk or dawn. Seasonal analyses show song absence during summer (June–August), emergence during fall (September–October), peak during late fall/winter (November–January), and highly variable detection during spring (February–May). During both years >80% of song occurred during the November–January peak. Song detection within a month reached a maximum of 58% of the time during November 2016. Song length increased (p < 0.01) month-to-month from the start in fall through the end of the peak in January. The months of maximum song occurrence coincide with declining visual sighting of humpbacks within Monterey Bay, consistent with s...

Collaboration


Dive into the Karin A. Forney's collaboration.

Top Co-Authors

Avatar

Jay Barlow

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

James V. Carretta

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Mark S. Lowry

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Becker

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jason D. Baker

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Brad Hanson

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Robert L. Brownell

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Erin M. Oleson

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jessica V. Redfern

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Scott R. Benson

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge