Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Buiting is active.

Publication


Featured researches published by Karin Buiting.


American Journal of Human Genetics | 2003

Epimutations in Prader-Willi and Angelman Syndromes: A Molecular Study of 136 Patients with an Imprinting Defect

Karin Buiting; Stephanie Groß; Christina Lich; Gabriele Gillessen-Kaesbach; Osman El-Maarri; Bernhard Horsthemke

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurogenetic disorders that are caused by the loss of function of imprinted genes in 15q11-q13. In a small group of patients, the disease is due to aberrant imprinting and gene silencing. Here, we describe the molecular analysis of 51 patients with PWS and 85 patients with AS who have such a defect. Seven patients with PWS (14%) and eight patients with AS (9%) were found to have an imprinting center (IC) deletion. Sequence analysis of 32 patients with PWS and no IC deletion and 66 patients with AS and no IC deletion did not reveal any point mutation in the critical IC elements. The presence of a faint methylated band in 27% of patients with AS and no IC deletion suggests that these patients are mosaic for an imprinting defect that occurred after fertilization. In patients with AS, the imprinting defect occurred on the chromosome that was inherited from either the maternal grandfather or grandmother; however, in all informative patients with PWS and no IC deletion, the imprinting defect occurred on the chromosome inherited from the paternal grandmother. These data suggest that this imprinting defect results from a failure to erase the maternal imprint during spermatogenesis.


Nature Genetics | 1996

Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene

Bärbel Dittrich; Karin Buiting; Bernd Korn; Sarah Rickard; Jessica L. Buxton; Shinji Saitoh; Robert D. Nicholls; Annemarie Poustka; Andreas Winterpacht; Bernhard Zabel; Bernhard Horsthemke

Imprinting on human chromosome 15 is regulated by an imprinting centre, which has been mapped to a 100–kb region including exon 1 of SNRPN. From this region we have identified novel transcripts, which represent alternative transcripts of the SNRPN gene. The novel exons lack protein coding potential and are expressed from the paternal chromosome only. We have also identified intragenic deletions and a point mutation in patients who have Angelman or Prader–Willi syndrome due to a parental imprint switch failure. This suggests that imprint switching on human chromosome 15 may involve alternative SNRPN transcripts.


Nature Genetics | 2001

Maternal methylation imprints on human chromosome 15 are established during or after fertilization.

Osman El-Maarri; Karin Buiting; Edwin G. Peery; Peter M. Kroisel; Basak Balaban; Klaus Wagner; Bulent Urman; Julia Heyd; Christina Lich; Camilynn I. Brannan; Jörn Walter; Bernhard Horsthemke

Prader-Willi syndrome (PWS) is a neurogenetic disorder that results from the lack of transcripts expressed from the paternal copy of the imprinted chromosomal region 15q11–q13 (refs. 1,2). In some patients, this is associated with a deletion of the SNURF-SNRPN exon 1 region inherited from the paternal grandmother and the presence of a maternal imprint on the paternal chromosome. Assuming that imprints are reset in the germ line, we and others have suggested that this region constitutes part of the 15q imprinting center (IC) and is important for the maternal to paternal imprint switch in the male germ line. Here we report that sperm DNA from two males with an IC deletion had a normal paternal methylation pattern along 15q11–q13. Similar findings were made in a mouse model. Our results indicate that the incorrect maternal methylation imprint in IC deletion patients is established de novo after fertilization. Moreover, we found that CpG-rich regions in SNURF-SNRPN and NDN, which in somatic tissues are methylated on the maternal allele, are hypomethylated in unfertilized human oocytes. Our results indicate that the normal maternal methylation imprints in 15q11–q13 also are established during or after fertilization.


Human Genetics | 1992

Molecular diagnosis of the Prader-Willi and Angelman syndromes by detection of parent-of-origin specific DNA methylation in 15q11-13

Bärbel Dittrich; Wendy P. Robinson; Hans Knoblauch; Karin Buiting; Kerstin Schmidt; Gabriele Gillessen-Kaesbach; Bernhard Horsthemke

The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are distinct genetic disorders that are caused by a deletion of chromosome region 15q11-13 or by uniparental disomy for chromosome 15. Whereas PWS results from the absence of a paternal copy of 15q11-13, the absence of a maternal copy of 15q11-13 leads to AS. We have found that an MspI/HpaII restriction site at the D15S63 locus in 15q11-13 is methylated on the maternally derived chromosome, but unmethylated on the paternally derived chromosome. Based on this difference, we have devised a rapid diagnostic test for patients suspected of having PWS and AS.


Nature Genetics | 2000

De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch.

Beata Bielińska; Susan M. Blaydes; Karin Buiting; Tao Yang; Małgorzata Krajewska-Walasek; Bernhard Horsthemke; Camilynn I. Brannan

Prader-Willi syndrome (PWS) is a neurogenetic disease characterized by infantile hypotonia, gonadal hypoplasia, obsessive behaviour and neonatal feeding difficulties followed by hyperphagia, leading to profound obesity. PWS is due to a lack of paternal genetic information at 15q11–q13 (ref. 2). Five imprinted, paternally expressed genes map to the PWS region, MKRN3 (ref. 3), NDN (ref. 4), NDNL1 (ref. 5), SNRPN (refs 6–8) and IPW (ref. 9), as well as two poorly characterized framents designated PAR-1 and PAR-5 (ref. 10). Imprinting of this region involves a bipartite ‘imprinting centre’ (IC), which overlaps SNRPN (refs 10,11). Deletion of the SNRPN promoter/exon 1 region (the PWS IC element) appears to impair the establishment of the paternal imprint in the male germ line and leads to PWS. Here we report a PWS family in which the father is mosaic for an IC deletion on his paternal chromosome. The deletion chromosome has acquired a maternal methylation imprint in his somatic cells. We have made identical findings in chimaeric mice generated from two independent embryonic stem (ES) cell lines harbouring a similar deletion. Our studies demonstrate that the PWS IC element is not only required for the establishment of the paternal imprint, but also for its postzygotic maintenance.


American Journal of Human Genetics | 1998

Sporadic Imprinting Defects in Prader-Willi Syndrome and Angelman Syndrome: Implications for Imprint-Switch Models, Genetic Counseling, and Prenatal Diagnosis

Karin Buiting; Bärbel Dittrich; S. Gross; Christina Lich; C. Färber; Tina Buchholz; E. Smith; André Reis; Joachim Bürger; Markus M. Nöthen; U. Barth-Witte; Bart Janssen; D. Abeliovich; I. Lerer; A. van den Ouweland; D. J. J. Halley; Connie Schrander-Stumpel; H.J.M. Smeets; Peter Meinecke; Sue Malcolm; A. Gardner; Marc Lalande; Robert D. Nicholls; Kathryn Friend; Andreas Schulze; Gert Matthijs; Hannaleena Kokkonen; P Hilbert; L. Van Maldergem; G. Glover

The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are caused by the loss of function of imprinted genes in proximal 15q. In approximately 2%-4% of patients, this loss of function is due to an imprinting defect. In some cases, the imprinting defect is the result of a parental imprint-switch failure caused by a microdeletion of the imprinting center (IC). Here we describe the molecular analysis of 13 PWS patients and 17 AS patients who have an imprinting defect but no IC deletion. Heteroduplex and partial sequence analysis did not reveal any point mutations of the known IC elements, either. Interestingly, all of these patients represent sporadic cases, and some share the paternal (PWS) or the maternal (AS) 15q11-q13 haplotype with an unaffected sib. In each of five PWS patients informative for the grandparental origin of the incorrectly imprinted chromosome region and four cases described elsewhere, the maternally imprinted paternal chromosome region was inherited from the paternal grandmother. This suggests that the grandmaternal imprint was not erased in the fathers germ line. In seven informative AS patients reported here and in three previously reported patients, the paternally imprinted maternal chromosome region was inherited from either the maternal grandfather or the maternal grandmother. The latter finding is not compatible with an imprint-switch failure, but it suggests that a paternal imprint developed either in the maternal germ line or postzygotically. We conclude (1) that the incorrect imprint in non-IC-deletion cases is the result of a spontaneous prezygotic or postzygotic error, (2) that these cases have a low recurrence risk, and (3) that the paternal imprint may be the default imprint.


Human Molecular Genetics | 1992

Molecular dissection of the Prader-Willi/Angelman syndrome region (15q11–13) by YAC cloning and FISH analysis

Akira Kuwano; Apiwat Mutirangura; Bärbel Dittrich; Karin Buiting; Bernhard Horsthemke; Shinji Saitoh; N. Niikawa; Susan A. Ledbetter; Frank Greenberg; A.C. Chinault; David H. Ledbetter

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct mental retardation disorders associated with deletions of proximal 15q (q11-q13) of different parental origin. Yeast artificial chromosome (YAC) clones were isolated for 9 previously mapped DNA probes from this region, and for one newly derived marker, LS6-1 (D15S113). A YAC contig of 1-1.5 Mb encompassing four markers (ML34, IR4-3R, PW71, and TD189-1) was constructed. Multi-color fluorescence in situ hybridization (FISH) analysis of interphase nuclei was combined with YAC contig information to provide the following order of markers: cen-IR39-ML34-IR4-3R-PW71-TD189-1-LS6++ +-1-TD3-21-GABRB3-IR10-1-CMW1-tel. FISH analysis was performed on 8 cases of PWS and 3 cases of AS, including 5 patients with normal karyotypes. All eleven patients were deleted for YACs in the interval from IR4-3R to GABRB3. On the proximal side of the deletion interval, 10/10 breakpoints fell within a single ML34 YAC of 370 kb. On the distal side, 8/9 breakpoints fell within a single IR10-1 YAC of 200 kb. These results indicate a striking consistency in the location of the proximal and distal breakpoints in PWS and AS patients. FISH analysis on a previously reported case of familial AS confirmed a submicroscopic deletion including YACs corresponding to LS6-1, TD3-21 and GABRB3 and supports the separation of the PWS and AS critical regions. Since these three YACs do not overlap each other, the minimum size of the AS critical region is > or = 650 kb.


Nature Genetics | 2000

The imprinting box of the Prader-Willi/Angelman syndrome domain

Ruth Shemer; Alon Y. Hershko; Jonathan Perk; Raul Mostoslavsky; Ben-Zion Tsuberi; Howard Cedar; Karin Buiting; Aharon Razin

A subset of mammalian genes is monoallelically expressed in a parent-of-origin manner. These genes are subject to an imprinting process that epigenetically marks alleles according to their parental origin during gametogenesis. Imprinted genes can be organized in clusters as exemplified by the 2-Mb domain on human chromosome 15q11–q13 and its mouse orthologue on chromosome 7c (ref. 1). Loss of this 2-Mb domain on the paternal or maternal allele results in two neurogenetic disorders, Prader-Willi syndrome (PWS) or Angelman syndrome (AS), respectively. Microdeletions on the paternal allele share a 4.3-kb short region of overlap (SRO), which includes the SNRPN promoter/exon1, cause PWS and silence paternally expressed genes. Microdeletions on the maternal allele share a 0.88-kb SRO located 35 kb upstream to the SNRPN promoter, cause AS and alleviate repression of genes on the maternal allele. Individuals carrying both AS and PWS deletions on the paternal allele show a PWS phenotype and genotype. These observations suggest that cis elements within the AS-SRO and PWS-SRO constitute an imprinting box that regulates the entire domain on both chromosomes. Here we show that a minitransgene composed of a 200-bp Snrpn promoter/exon1 and a 1-kb sequence located approximately 35 kb upstream to the SNRPN promoter confer imprinting as judged by differential methylation, parent-of-origin–specific transcription and asynchronous replication.


Cytogenetic and Genome Research | 2006

Imprinting defects on human chromosome 15

Bernhard Horsthemke; Karin Buiting

The Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic diseases that are caused by the loss of function of imprinted genes on the proximal long arm of human chromosome 15. In a few percent of patients with PWS and AS, the disease is due to aberrant imprinting and gene silencing. In patients with PWS and an imprinting defect, the paternal chromosome carries a maternal imprint. In patients with AS and an imprinting defect, the maternal chromosome carries a paternal imprint. Imprinting defects offer a unique opportunity to identify some of the factors and mechanisms involved in imprint erasure, resetting and maintenance. In approximately 10% of cases the imprinting defects are caused by a microdeletion affecting the 5′ end of the SNURF-SNRPN locus. These deletions define the 15q imprinting center (IC), which regulates imprinting in the whole domain. These findings have been confirmed and extended in knock-out and transgenic mice. In the majority of patients with an imprinting defect, the incorrect imprint has arisen without a DNA sequence change, possibly as the result of stochastic errors of the imprinting process or the effect of exogenous factors.


PLOS Genetics | 2009

The human retinoblastoma gene is imprinted.

Deniz Kanber; Tea Berulava; Ole Ammerpohl; Diana Mitter; Julia Richter; Reiner Siebert; Bernhard Horsthemke; Dietmar R. Lohmann; Karin Buiting

Genomic imprinting is an epigenetic process leading to parent-of-origin–specific DNA methylation and gene expression. To date, ∼60 imprinted human genes are known. Based on genome-wide methylation analysis of a patient with multiple imprinting defects, we have identified a differentially methylated CpG island in intron 2 of the retinoblastoma (RB1) gene on chromosome 13. The CpG island is part of a 5′-truncated, processed pseudogene derived from the KIAA0649 gene on chromosome 9 and corresponds to two small CpG islands in the open reading frame of the ancestral gene. It is methylated on the maternal chromosome 13 and acts as a weak promoter for an alternative RB1 transcript on the paternal chromosome 13. In four other KIAA0649 pseudogene copies, which are located on chromosome 22, the two CpG islands have deteriorated and the CpG dinucleotides are fully methylated. By analysing allelic RB1 transcript levels in blood cells, as well as in hypermethylated and 5-aza-2′-deoxycytidine–treated lymphoblastoid cells, we have found that differential methylation of the CpG island skews RB1 gene expression in favor of the maternal allele. Thus, RB1 is imprinted in the same direction as CDKN1C, which operates upstream of RB1. The imprinting of two components of the same pathway indicates that there has been strong evolutionary selection for maternal inhibition of cell proliferation.

Collaboration


Dive into the Karin Buiting's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasmin Beygo

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deniz Kanber

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Lich

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge