Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin Holmfeldt is active.

Publication


Featured researches published by Karin Holmfeldt.


Applied and Environmental Microbiology | 2007

Large Variabilities in Host Strain Susceptibility and Phage Host Range Govern Interactions between Lytic Marine Phages and Their Flavobacterium Hosts

Karin Holmfeldt; Mathias Middelboe; Ole Nybroe; Lasse Riemann

ABSTRACT Phages are a main mortality factor for marine bacterioplankton and are thought to regulate bacterial community composition through host-specific infection and lysis. In the present study we demonstrate for a marine phage-host assemblage that interactions are complex and that specificity and efficiency of infection and lysis are highly variable among phages infectious to strains of the same bacterial species. Twenty-three Bacteroidetes strains and 46 phages from Swedish and Danish coastal waters were analyzed. Based on genotypic and phenotypic analyses, 21 of the isolates could be considered strains of Cellulophaga baltica (Flavobacteriaceae). Nevertheless, all bacterial strains showed unique phage susceptibility patterns and differed by up to 6 orders of magnitude in sensitivity to the same titer of phage. The isolated phages showed pronounced variations in genome size (8 to >242 kb) and host range (infecting 1 to 20 bacterial strains). Our data indicate that marine bacterioplankton are susceptible to multiple co-occurring phages and that sensitivity towards phage infection is strain specific and exists as a continuum between highly sensitive and resistant, implying an extremely complex web of phage-host interactions. Hence, effects of phages on bacterioplankton community composition and dynamics may go undetected in studies where strain identity is not resolvable, i.e., in studies based on the phylogenetic resolution provided by 16S rRNA gene or internal transcribed spacer sequences.


Applied and Environmental Microbiology | 2008

The Native Bacterioplankton Community in the Central Baltic Sea Is Influenced by Freshwater Bacterial Species

Lasse Riemann; C. Leitet; Thomas Pommier; Karin Simu; Karin Holmfeldt; Ulf Larsson; Åke Hagström

ABSTRACT The Baltic Sea is one of the largest brackish environments on Earth. Despite extensive knowledge about food web interactions and pelagic ecosystem functioning, information about the bacterial community composition in the Baltic Sea is scarce. We hypothesized that due to the eutrophic low-salinity environment and the long water residence time (>5 years), the bacterioplankton community from the Baltic proper shows a native “brackish” composition influenced by both freshwater and marine phylotypes. The bacterial community composition in surface water (3-m depth) was examined at a single station throughout a full year. Denaturing gradient gel electrophoresis (DGGE) showed that the community composition changed over the year. Further, it indicated that at the four extensive samplings (16S rRNA gene clone libraries and bacterial isolates from low- and high-nutrient agar plates and seawater cultures), different bacterial assemblages associated with different environmental conditions were present. Overall, the sequencing of 26 DGGE bands, 160 clones, 209 plate isolates, and 9 dilution culture isolates showed that the bacterial assemblage in surface waters of the central Baltic Sea was dominated by Bacteroidetes but exhibited a pronounced influence of typical freshwater phylogenetic groups within Actinobacteria, Verrucomicrobia, and Betaproteobacteria and a lack of typical marine taxa. This first comprehensive analysis of bacterial community composition in the central Baltic Sea points to the existence of an autochthonous estuarine community uniquely adapted to the environmental conditions prevailing in this brackish environment.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Twelve previously unknown phage genera are ubiquitous in global oceans

Karin Holmfeldt; Natalie Solonenko; Manesh B Shah; Kristen L Corrier; Lasse Riemann; Nathan C. VerBerkmoes; Matthew B. Sullivan

Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in “unknowns” dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage–host systems for experimental hypothesis testing.


Environmental Microbiology | 2009

Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea.

Karin Holmfeldt; Claudia Dziallas; Josefin Titelman; Kirsten Pohlmann; Hans-Peter Grossart; Lasse Riemann

Actinobacteria are highly abundant in pelagic freshwater habitats and also occur in estuarine environments such as the Baltic Sea. Because of gradients in salinity and other environmental variables estuaries offer natural systems for examining factors that determine Actinobacteria distribution. We studied abundance and community structure of Bacteria and Actinobacteria along two transects in the northern Baltic Sea. Quantitative (CARD-FISH) and qualitative (DGGE and clone libraries) analyses of community composition were compared with environmental parameters. Actinobacteria accounted for 22-27% of all bacteria and the abundance changed with temperature. Analysis of 549 actinobacterial 16S rRNA sequences from four clone libraries revealed a dominance of the freshwater clusters acI and acIV, and two new subclusters (acI-B scB-5 and acIV-E) were assigned. Whereas acI was present at all stations, occurrence of acII and acIV differed between stations and was related to dissolved organic carbon (DOC) and chlorophyll a (Chl a) respectively. The prevalence of the acI-A and acI-B subclusters changed in relation to total phosphorus (Tot-P) and Chl a respectively. Community structure of Bacteria and Actinobacteria differed between the river station and all other stations, responding to differences in DOC, Chl a and bacterial production. In contrast, the composition of active Actinobacteria (analysis based on reversely transcribed RNA) changed in relation to salinity and Tot-P. Our study suggests an important ecological role of Actinobacteria in the brackish northern Baltic Sea. It highlights the need to address dynamics at the cluster or subcluster phylogenetic levels to gain insights into the factors regulating distribution and composition of Actinobacteria in aquatic environments.


Applied and Environmental Microbiology | 2012

Cultivated Single-Stranded DNA Phages That Infect Marine Bacteroidetes Prove Difficult To Detect with DNA-Binding Stains

Karin Holmfeldt; Duško Odić; Matthew B. Sullivan; Mathias Middelboe; Lasse Riemann

ABSTRACT This is the first description of cultivated icosahedral single-stranded DNA (ssDNA) phages isolated on heterotrophic marine bacterioplankton and with Bacteroidetes hosts. None of the 8 phages stained well with DNA-binding stains, suggesting that in situ abundances of ssDNA phages are drastically underestimated using conventional methods for enumeration.


Applied and Environmental Microbiology | 2005

Culturability and Coexistence of Colony-Forming and Single-Cell Marine Bacterioplankton

Karin Simu; Karin Holmfeldt; Ulla Li Zweifel; Åke Hagström

ABSTRACT Culturability and coexistence of bacterioplankton exhibiting different life strategies were investigated in the Baltic Sea and Skagerrak Sea. Bacterial numbers were estimated using a dilution-to-extinction culturing assay (DCA) and calculated as the most probable number, based on six different methods to detect bacterial growth in the DCA. Irrespective of the method used to detect growth, the fraction of multiplying cells never exceeded 10%, using the total count of 4′,6′-diamidino-2-phenylindole (DAPI)-stainable cells as a reference. Furthermore, the data also showed that non-colony-forming bacteria made up the majority of the viable cells, confirming molecular results showing dominance of non-colony-forming bacteria in clone libraries. The results obtained are in agreement with previous observations, indicating that bacterial assemblages in seawater are dominated by small, active subpopulations coexisting with a large group of inactive cells. The ratio of colony-forming to non-colony-forming bacteria was approximately 10 to 20 times higher in the brackish Baltic Sea than in the Skagerrak Sea. These two sea areas differ in (for example) their levels of bacterial production, dissolved organic carbon, and salinity. We suggest that the relative importance of colony-forming versus non-colony-forming bacterioplankton may be linked to environmental characteristics.


The ISME Journal | 2016

Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations

Xiaofen Wu; Karin Holmfeldt; Valerie Hubalek; Daniel Lundin; Mats E. Åström; Stefan Bertilsson; Mark Dopson

Microorganisms in the terrestrial deep biosphere host up to 20% of the earth’s biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from <20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 μm filter. Such cells of <0.22 μm would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with >86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the <0.22 μm populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow ‘modern marine’ water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, ‘old saline’ water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.


Microbial Ecology | 2009

Importance of Viral Lysis and Dissolved DNA for Bacterioplankton Activity in a P-Limited Estuary, Northern Baltic Sea

Lasse Riemann; Karin Holmfeldt; Josefin Titelman

Through lysis of bacterioplankton cells, viruses mediate an important, but poorly understood, pathway of carbon and nutrients from the particulate to the dissolved form. Via this activity, nutrient-rich cell lysates may become available to noninfected cells and support significant growth. However, the nutritional value of lysates for noninfected bacteria presumably depends on the prevailing nutrient limitation. In the present study, we examined dynamics of dissolved DNA (D-DNA) and viruses along a transect in the phosphorus (P)-limited Öre Estuary, northern Baltic Sea. We found that viruses were an important mortality factor for bacterioplankton and that their activity mediated a significant recycling of carbon and especially of P. Uptake of dissolved DNA accounted for up to 70% of the bacterioplankton P demand, and about a quarter of the D-DNA pool was supplied through viral lysis of bacterial cells. Generally, the importance of viral lysates and uptake of D-DNA was highest at the estuarine and offshore stations and was positively correlated with P limitation measured as alkaline phosphatase activity. Our results highlight the importance of viral activity for the internal recycling of principal nutrients and pinpoints D-DNA as a particularly relevant compound in microbial P dynamics.


The ISME Journal | 2017

Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus

Cristina Howard-Varona; Simon Roux; Hugo Dore; Natalie Solonenko; Karin Holmfeldt; Lye Meng Markillie; Galya Orr; Matthew B. Sullivan

Bacteria impact humans, industry and nature, but do so under viral constraints. Problematically, knowledge of viral infection efficiencies and outcomes derives from few model systems that over-represent efficient lytic infections and under-represent virus–host natural diversity. Here we sought to understand infection efficiency regulation in an emerging environmental Bacteroidetes–virus model system with markedly different outcomes on two genetically and physiologically nearly identical host strains. For this, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout both infections. While phage transcriptomes were similar, transcriptional differences between hosts suggested host-derived regulation of infection efficiency. Specifically, the alternative host overexpressed DNA degradation genes and underexpressed translation genes, which seemingly targeted phage DNA particle production, as experiments revealed they were both significantly delayed (by >30 min) and reduced (by >50%) in the inefficient infection. This suggests phage failure to repress early alternative host expression and stress response allowed the host to respond against infection by delaying phage DNA replication and protein translation. Given that this phage type is ubiquitous and abundant in the global oceans and that variable viral infection efficiencies are central to dynamic ecosystems, these data provide a critically needed foundation for understanding and modeling viral infections in nature.


Microbial Ecology | 2010

Virus Production and Lysate Recycling in Different Sub-basins of the Northern Baltic Sea

Karin Holmfeldt; Josefin Titelman; Lasse Riemann

In the Gulf of Bothnia, northern Baltic Sea, a large freshwater inflow creates north-southerly gradients in physico-chemical and biological factors across the two sub-basins, the Bothnian Bay (BB) and the Bothnian Sea. In particular, the sub-basins differ in nutrient limitation (nitrogen vs. phosphorus; P). Since viruses are rich in P, and virus production is commonly connected with bacterial abundance and growth, we hypothesized that the role of viral lysis differs between the sub-basins. Thus, we examined virus production and the potential importance of lysate recycling in surface waters along a transect in the Gulf of Bothnia. Surprisingly, virus production and total P were negatively correlated. In the BB, virus production rates were double those elsewhere in the system, although bacterial abundance and production were the lowest. In the BB, virus-mediated cell lysates could account for 70-180% and 100-250% of the bacterial carbon and P demand, respectively, while only 4-15% and 8-21% at the other stations. Low concentrations of dissolved DNA (D-DNA) with a high proportion of encapsulated DNA (viruses) in the BB suggested rapid turnover and high uptake of free DNA. The correlation of D-DNA and total P indicates that D-DNA is a particularly important nutrient source in the P-limited BB. Our study demonstrates large and counterintuitive differences in virus-mediated recycling of carbon and nutrients in two basins of the Gulf of Bothnia, which differ in microbial community composition and nutrient limitation.

Collaboration


Dive into the Karin Holmfeldt's collaboration.

Top Co-Authors

Avatar

Lasse Riemann

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge