Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karin M. Hoffmeister is active.

Publication


Featured researches published by Karin M. Hoffmeister.


Cell | 2003

The Clearance Mechanism of Chilled Blood Platelets

Karin M. Hoffmeister; Thomas W. Felbinger; Hervé Falet; Cécile V. Denis; Wolfgang Bergmeier; Tanya N. Mayadas; Ulrich H. von Andrian; Denisa D. Wagner; Thomas P. Stossel; John H. Hartwig

Platelet transfusion is a very common lifesaving medical procedure. Not widely known is the fact that platelets, unlike other blood cells, rapidly leave the circulation if refrigerated prior to transfusion. This peculiarity requires blood services to store platelets at room temperature, limiting platelet supplies for clinical needs. Here, we describe the mechanism of this clearance system, a longstanding mystery. Chilling platelets clusters their von Willebrand (vWf) receptors, eliciting recognition of mouse and human platelets by hepatic macrophage complement type 3 (CR3) receptors. CR3-expressing but not CR3-deficient mice exposed to cold rapidly decrease platelet counts. Cooling primes platelets for activation. We propose that platelets are thermosensors, primed at peripheral sites where most injuries occurred throughout evolution. Clearance prevents pathologic thrombosis by primed platelets. Chilled platelets bind vWf and function normally in vitro and ex vivo after transfusion into CR3-deficient mice. Therefore, GPIb modification might permit cold platelet storage.


Journal of Cell Biology | 2010

Cytoskeletal mechanics of proplatelet maturation and platelet release

Jonathan N. Thon; Alejandro Montalvo; Sunita Patel-Hett; Matthew T. Devine; Jennifer L. Richardson; Allen Ehrlicher; Mark K. Larson; Karin M. Hoffmeister; John H. Hartwig; Joseph E. Italiano

New steps in the process of conversion of proplatelet extensions from megakaryocytes into mature platelets are defined.


Nature Medicine | 2009

Dual roles for hepatic lectin receptors in the clearance of chilled platelets.

Viktoria Rumjantseva; Prabhjit K. Grewal; Hans H. Wandall; Emma C. Josefsson; Anne Louise Sørensen; Göran Larson; Jamey D. Marth; John H. Hartwig; Karin M. Hoffmeister

Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage β2 integrin binding to β-N-acetylglucosamine (β-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the β-GlcNAc moieties by galactosylation prevents clearance of short-term–cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both β2 integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.


Blood | 2009

Role of sialic acid for platelet life span: exposure of β-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor–expressing liver macrophages and hepatocytes

Anne Louise Sørensen; Viktoria Rumjantseva; Sara Nayeb-Hashemi; Henrik Clausen; John H. Hartwig; Hans H. Wandall; Karin M. Hoffmeister

Although surface sialic acid is considered a key determinant for the survival of circulating blood cells and glycoproteins, its role in platelet circulation lifetime is not fully clarified. We show that thrombocytopenia in mice deficient in the St3gal4 sialyltransferase gene (St3Gal-IV(-/-) mice) is caused by the recognition of terminal galactose residues exposed on the platelet surface in the absence of sialylation. This results in accelerated platelet clearance by asialoglycoprotein receptor-expressing scavenger cells, a mechanism that was recently shown to induce thrombocytopenia during Streptococcus pneumoniae sepsis. We now identify platelet GPIbalpha as a major counterreceptor on ST3Gal-IV(-/-) platelets for asialoglycoprotein receptors. Moreover, we report data that establish the importance of sialylation of the von Willebrand factor in its function.


Nature Medicine | 2015

The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling

Renata Grozovsky; Antonija Jurak Begonja; Kaifeng Liu; Gary A. Visner; John H. Hartwig; Hervé Falet; Karin M. Hoffmeister

The hepatic Ashwell-Morell receptor (AMR) can bind and remove desialylated platelets. Here we demonstrate that platelets become desialylated as they circulate and age in blood. Binding of desialylated platelets to the AMR induces hepatic expression of thrombopoietin (TPO) mRNA and protein, thereby regulating platelet production. Endocytic AMR controls TPO expression through Janus kinase 2 (JAK2) and the acute phase response signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro. Recognition of this newly identified physiological feedback mechanism illuminates the pathophysiology of platelet diseases, such as essential thrombocythemia and immune thrombocytopenia, and contributes to an understanding of the mechanisms of thrombocytopenia observed with JAK1/2 inhibition.


Blood | 2008

Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules

Sunita Patel-Hett; Jennifer L. Richardson; Harald Schulze; Ksenija Drabek; Natasha A. Isaac; Karin M. Hoffmeister; Ramesh A. Shivdasani; J. Chloë Bulinski; Niels Galjart; John H. Hartwig; Joseph E. Italiano

The marginal band of microtubules maintains the discoid shape of resting blood platelets. Although studies of platelet microtubule coil structure conclude that it is composed of a single microtubule, no investigations of its dynamics exist. In contrast to previous studies, permeabilized platelets incubated with GTP-rhodamine-tubulin revealed tubulin incorporation at 7.9 (+/- 1.9) points throughout the coil, and anti-EB1 antibodies stained 8.7 (+/- 2.0) sites, indicative of multiple free microtubules. To pursue this result, we expressed the microtubule plus-end marker EB3-GFP in megakaryocytes and examined its behavior in living platelets released from these cells. Time-lapse microscopy of EB3-GFP in resting platelets revealed multiple assembly sites within the coil and a bidirectional pattern of assembly. Consistent with these findings, tyrosinated tubulin, a marker of newly assembled microtubules, localized to resting platelet microtubule coils. These results suggest that the resting platelet marginal band contains multiple highly dynamic microtubules of mixed polarity. Analysis of microtubule coil diameters in newly formed resting platelets indicates that microtubule coil shrinkage occurs with aging. In addition, activated EB3-GFP-expressing platelets exhibited a dramatic increase in polymerizing microtubules, which travel outward and into filopodia. Thus, the dynamic microtubules associated with the marginal band likely function during both resting and activated platelet states.


Blood | 2012

Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice

A. J. Gerard Jansen; Emma C. Josefsson; Viktoria Rumjantseva; Qiyong Peter Liu; Hervé Falet; Wolfgang Bergmeier; Stephen M. Cifuni; Robert Sackstein; Ulrich H. von Andrian; Denisa D. Wagner; John H. Hartwig; Karin M. Hoffmeister

When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17(ΔZn/ΔZn) platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Importance of free actin filament barbed ends for Arp2/3 complex function in platelets and fibroblasts

Hervé Falet; Karin M. Hoffmeister; Ralph Neujahr; Joseph E. Italiano; Thomas P. Stossel; Frederick S. Southwick; John H. Hartwig

We investigated the effect of actin filament barbed end uncapping on Arp2/3 complex function both in vivo and in vitro. Arp2/3 complex redistributes rapidly and uniformly to the lamellar edge of activated wild-type platelets and fibroblasts but clusters in marginal actin filament clumps in gelsolin-null cells. Treatment of gelsolin-null platelets with the negative dominant N-WASp C-terminal CA domain has no effect on their residual actin nucleation activity, placing gelsolin actin filament severing, capping, and uncapping function upstream of Arp2/3 complex nucleation. Actin filaments capped by gelsolin or the gelsolin homolog CapG fail to enhance Arp2/3 complex nucleation in vitro, but uncapping of the barbed ends of these actin filaments restores their ability to potentiate Arp2/3 complex nucleation. We conclude that Arp2/3 complex contribution to actin filament nucleation in platelets and fibroblasts importantly requires free barbed ends generated by severing and uncapping.


Journal of Biological Chemistry | 2001

Mechanisms of Cold-induced Platelet Actin Assembly

Karin M. Hoffmeister; Hervé Falet; Alex Toker; Kurt L. Barkalow; Thomas P. Stossel; John H. Hartwig

Various agonists but also chilling cause blood platelets to increase cytosolic calcium, polymerize actin, and change shape. We report that cold increases barbed end nucleation sites in octyl glucoside-permeabilized platelets by 3-fold, enabling analysis of the intermediates of this response. Although chilling does not change polyphosphoinositide (ppI) levels, a ppI-binding peptide completely inhibits cold-induced nucleation. The C terminus of N-WASp, which inhibits the Arp2/3 complex, blocks nucleation by 40%; GDPβS, N17Rac and N17Cdc42 have no effects. Some gelsolin translocates to the detergent-insoluble cytoskeleton after cooling. Chilled platelets from gelsolin-deficient mice have ∼50% fewer new actin nuclei compared with platelets from wild-type mice. EGTA completely inhibits gelsolin translocation into the cytoskeleton, and the small amount of gelsolin initially there becomes soluble. Chilling releases adducin from the detergent-resistant cytoskeleton. We conclude that platelet actin filament assembly induced by cooling involves ppI-mediated actin filament barbed end uncapping and de novo nucleation independently of surface receptors or downstream signaling intermediates besides calcium. The actin-related changes occur in platelets at temperatures below 37 °C, suggesting that the platelet may be more activable at temperatures at the body surface than at core temperature, thereby favoring superficial hemostasis over internal thrombosis.


Nature Communications | 2015

Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia

June Li; Dianne E. van der Wal; Guangheng Zhu; Miao Xu; Issaka Yougbaré; Li Ma; Brian Vadasz; Naadiya Carrim; Renata Grozovsky; Min Ruan; Lingyan Zhu; Qingshu Zeng; Lili Tao; Zhimin Zhai; Jun Peng; Ming Hou; Valery Leytin; John Freedman; Karin M. Hoffmeister; Heyu Ni

Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests that antibody-mediated platelet destruction occurs in the spleen, via macrophages through Fc–FcγR interactions. However, we and others have demonstrated that anti-GPIbα (but not GPIIbIIIa)-mediated ITP is often refractory to therapies targeting FcγR pathways. Here, we generate mouse anti-mouse monoclonal antibodies (mAbs) that recognize GPIbα and GPIIbIIIa of different species. Utilizing these unique mAbs and human ITP plasma, we find that anti-GPIbα, but not anti-GPIIbIIIa antibodies, induces Fc-independent platelet activation, sialidase neuraminidase-1 translocation and desialylation. This leads to platelet clearance in the liver via hepatocyte Ashwell–Morell receptors, which is fundamentally different from the classical Fc–FcγR-dependent macrophage phagocytosis. Importantly, sialidase inhibitors ameliorate anti-GPIbα-mediated thrombocytopenia in mice. These findings shed light on Fc-independent cytopenias, designating desialylation as a potential diagnostic biomarker and therapeutic target in the treatment of refractory ITP.

Collaboration


Dive into the Karin M. Hoffmeister's collaboration.

Top Co-Authors

Avatar

John H. Hartwig

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hervé Falet

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Renata Grozovsky

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Silvia Giannini

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viktoria Rumjantseva

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Italiano

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Thomas P. Stossel

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge