Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Grozovsky is active.

Publication


Featured researches published by Renata Grozovsky.


Nature Medicine | 2015

The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling

Renata Grozovsky; Antonija Jurak Begonja; Kaifeng Liu; Gary A. Visner; John H. Hartwig; Hervé Falet; Karin M. Hoffmeister

The hepatic Ashwell-Morell receptor (AMR) can bind and remove desialylated platelets. Here we demonstrate that platelets become desialylated as they circulate and age in blood. Binding of desialylated platelets to the AMR induces hepatic expression of thrombopoietin (TPO) mRNA and protein, thereby regulating platelet production. Endocytic AMR controls TPO expression through Janus kinase 2 (JAK2) and the acute phase response signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro. Recognition of this newly identified physiological feedback mechanism illuminates the pathophysiology of platelet diseases, such as essential thrombocythemia and immune thrombocytopenia, and contributes to an understanding of the mechanisms of thrombocytopenia observed with JAK1/2 inhibition.


Nature Communications | 2015

Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia

June Li; Dianne E. van der Wal; Guangheng Zhu; Miao Xu; Issaka Yougbaré; Li Ma; Brian Vadasz; Naadiya Carrim; Renata Grozovsky; Min Ruan; Lingyan Zhu; Qingshu Zeng; Lili Tao; Zhimin Zhai; Jun Peng; Ming Hou; Valery Leytin; John Freedman; Karin M. Hoffmeister; Heyu Ni

Immune thrombocytopenia (ITP) is a common bleeding disorder caused primarily by autoantibodies against platelet GPIIbIIIa and/or the GPIb complex. Current theory suggests that antibody-mediated platelet destruction occurs in the spleen, via macrophages through Fc–FcγR interactions. However, we and others have demonstrated that anti-GPIbα (but not GPIIbIIIa)-mediated ITP is often refractory to therapies targeting FcγR pathways. Here, we generate mouse anti-mouse monoclonal antibodies (mAbs) that recognize GPIbα and GPIIbIIIa of different species. Utilizing these unique mAbs and human ITP plasma, we find that anti-GPIbα, but not anti-GPIIbIIIa antibodies, induces Fc-independent platelet activation, sialidase neuraminidase-1 translocation and desialylation. This leads to platelet clearance in the liver via hepatocyte Ashwell–Morell receptors, which is fundamentally different from the classical Fc–FcγR-dependent macrophage phagocytosis. Importantly, sialidase inhibitors ameliorate anti-GPIbα-mediated thrombocytopenia in mice. These findings shed light on Fc-independent cytopenias, designating desialylation as a potential diagnostic biomarker and therapeutic target in the treatment of refractory ITP.


Endocrinology | 2009

Type 2 Deiodinase Expression Is Induced by Peroxisomal Proliferator-Activated Receptor-γ Agonists in Skeletal Myocytes

Renata Grozovsky; Scott Ribich; Matthew L. Rosene; Michelle A. Mulcahey; Stephen A. Huang; Mary Elizabeth Patti; Antonio C. Bianco; Brian W. Kim

The thyroid hormone activating type 2 deiodinase (D2) is known to play a role in brown adipose tissue-mediated adaptive thermogenesis in rodents, but the finding of D2 in skeletal muscle raises the possibility of a broader metabolic role. In the current study, we examined the regulation of the D2 pathway in primary skeletal muscle myoblasts taken from both humans and mice. We found that pioglitazone treatment led to a 1.6- to 1.9-fold increase in primary human skeletal myocyte D2 activity; this effect was seen with other peroxisomal proliferator-activated receptor-gamma agonists. D2 activity in primary murine skeletal myotubes increased 2.8-fold in response to 5 microM pioglitazone and 1.6-fold in response to 5 nM insulin and increased in a dose-dependent manner in response to lithocholic acid (maximum response at 25 microM was approximately 3.8-fold). We compared Akt phosphorylation in primary myotubes derived from wild-type and D2 knockout (D2KO) mice: phospho-Akt was reduced by 50% in the D2KO muscle after 1 nM insulin exposure. Expression of T(3)-responsive muscle genes via quantitative RT-PCR suggests that D2KO cells have decreased thyroid hormone signaling, which could contribute to the abnormalities in insulin signaling. D2 activity in skeletal muscle fragments from both murine and human sources was low, on the order of about 0.01 fmol/min . mg of muscle protein. The phenotypic changes seen with D2KO cells support a metabolic role for D2 in muscle, hinting at a D2-mediated linkage between thyroid hormone and insulin signaling, but the low activity calls into question whether skeletal muscle D2 is a major source of plasma T(3).


Current Opinion in Hematology | 2010

Novel clearance mechanisms of platelets.

Renata Grozovsky; Karin M. Hoffmeister; Hervé Falet

Purpose of reviewBlood platelets are involved in primary and secondary hemostasis and thus maintain the integrity of the vasculature. They circulate with an average lifespan of 5–9 days in humans. Thus, the body must generate and clear platelets daily to maintain normal physiological blood platelet counts. Known platelet clearance mechanisms include antibody-mediated clearance by spleen macrophages, as in immune thrombocytopenia, and platelet consumption due to massive blood loss. Recent findingsNew concepts in the clearance mechanisms of platelets have recently emerged. New evidence shows that platelets desialyted due to chilling or sepsis are cleared in the liver by macrophages, that is Kupffer cells, as well as hepatocytes, through lectin-mediated recognition of platelet glycans. On the contrary, platelet-associated antibodies normalize the clearance of platelets in a mouse model for Wiskott–Aldrich syndrome. SummaryThe goal of this review is to summarize the latest findings in platelet clearance mechanisms with a focus on lectin-mediated recognition of platelet glycans. Transfusion medicine and treatments of hematopoietic disorders associated with severe thrombocytopenia may benefit from a better understanding of these mechanisms.


Blood | 2015

Regulating billions of blood platelets: glycans and beyond.

Renata Grozovsky; Silvia Giannini; Hervé Falet; Karin M. Hoffmeister

The human body produces and removes 10(11) platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.


Blood | 2014

Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan.

Zhi-Jian Liu; Karin M. Hoffmeister; Zhongbo Hu; Donald E. Mager; Sihem Ait-Oudhia; Marlyse A. Debrincat; Irina Pleines; Emma C. Josefsson; Benjamin T. Kile; Joseph E. Italiano; Haley Ramsey; Renata Grozovsky; Peter Veng-Pedersen; Chaitanya Chavda; Martha Sola-Visner

The fetal/neonatal hematopoietic system must generate enough blood cells to meet the demands of rapid growth. This unique challenge might underlie the high incidence of thrombocytopenia among preterm neonates. In this study, neonatal platelet production and turnover were investigated in newborn mice. Based on a combination of blood volume expansion and increasing platelet counts, the platelet mass increased sevenfold during the first 2 weeks of murine life, a time during which thrombopoiesis shifted from liver to bone marrow. Studies applying in vivo biotinylation and mathematical modeling showed that newborn and adult mice had similar platelet production rates, but neonatal platelets survived 1 day longer in circulation. This prolonged lifespan fully accounted for the rise in platelet counts observed during the second week of murine postnatal life. A study of pro-apoptotic and anti-apoptotic Bcl-2 family proteins showed that neonatal platelets had higher levels of the anti-apoptotic protein Bcl-2 and were more resistant to apoptosis induced by the Bcl-2/Bcl-xL inhibitor ABT-737 than adult platelets. However, genetic ablation or pharmacologic inhibition of Bcl-2 alone did not shorten neonatal platelet survival or reduce platelet counts in newborn mice, indicating the existence of redundant or alternative mechanisms mediating the prolonged lifespan of neonatal platelets.


Blood | 2015

Dynamin 2-dependent endocytosis is required for normal megakaryocyte development in mice.

Markus Bender; Silvia Giannini; Renata Grozovsky; Terese Jönsson; Hilary Christensen; Fred G. Pluthero; Amy Ko; Ann Mullally; Walter H. A. Kahr; Karin M. Hoffmeister; Hervé Falet

Dynamins are highly conserved large GTPases (enzymes that hydrolyze guanosine triphosphate) involved in endocytosis and vesicle transport, and mutations in the ubiquitous and housekeeping dynamin 2 (DNM2) have been associated with thrombocytopenia in humans. To determine the role of DNM2 in thrombopoiesis, we generated Dnm2(fl/fl) Pf4-Cre mice specifically lacking DNM2 in the megakaryocyte (MK) lineage. Dnm2(fl/fl) Pf4-Cre mice had severe macrothrombocytopenia with moderately accelerated platelet clearance. Dnm2-null bone marrow MKs had altered demarcation membrane system formation in vivo due to defective endocytic pathway, and fetal liver-derived Dnm2-null MKs formed proplatelets poorly in vitro, showing that DNM2-dependent endocytosis plays a major role in MK membrane formation and thrombopoiesis. Endocytosis of the thrombopoietin receptor Mpl was impaired in Dnm2-null platelets, causing constitutive phosphorylation of the tyrosine kinase JAK2 and elevated circulating thrombopoietin levels. MK-specific DNM2 deletion severely disrupted bone marrow homeostasis, as reflected by marked expansion of hematopoietic stem and progenitor cells, MK hyperplasia, myelofibrosis, and consequent extramedullary hematopoiesis and splenomegaly. Taken together, our data demonstrate that unrestrained MK growth and proliferation results in rapid myelofibrosis and establishes a previously unrecognized role for DNM2-dependent endocytosis in megakaryopoiesis, thrombopoiesis, and bone marrow homeostasis.


Thyroid | 2010

Impaired Metabolic Effects of a Thyroid Hormone Receptor Beta-Selective Agonist in a Mouse Model of Diet-Induced Obesity

Melany Castillo; Beatriz C.G. Freitas; Matthew L. Rosene; Rafael Arrojo e Drigo; Renata Grozovsky; Rui M. B. Maciel; Mary-Elizabeth Patti; Miriam O. Ribeiro; Antonio C. Bianco

BACKGROUND The use of selective agonists of the thyroid hormone receptor isoform beta (TRbeta) has been linked to metabolic improvement in animal models of diet-induced obesity, nonalcoholic liver disease, and genetic hypercholesterolemia. METHODS To identify potential target tissues of such compounds, we exposed primary murine brown adipocytes and skeletal myocytes for 24 hours to 50 nM GC-24, a highly selective TRbeta agonist. GC-24 (17 ng/[g BW.day] for 36 days) was also tested in a mouse model of diet-induced obesity. RESULTS While the brown adipocytes responded to GC-24, with 17%-400% increases in the expression of 12 metabolically relevant genes, the myocytes remained largely unresponsive to GC-24 treatment. In control mice kept on chow diet, GC-24 treatment accelerated energy expenditure by about 15% and limited body weight gain by about 50%. However, in the obese animals the GC-24-mediated reduction in body weight gain dropped to only 20%, while energy expenditure remained unaffected. In addition, an analysis of gene expression in the skeletal muscle, brown adipose tissue, and liver of these obese animals failed to identify a conclusive GC-24 transcriptome footprint. CONCLUSION Feeding a high-fat diet impairs most of the beneficial metabolic effects associated with treatment with TRbeta-selective agonists.


Glycobiology | 2017

Circulating blood and platelets supply glycosyltransferases that enable extrinsic extracellular glycosylation.

Melissa M. Lee-Sundlov; David J. Ashline; Andrew J. Hanneman; Renata Grozovsky; Vernon N. Reinhold; Karin M. Hoffmeister; Joseph T.Y. Lau

Glycosyltransferases, usually residing within the intracellular secretory apparatus, also circulate in the blood. Many of these blood-borne glycosyltransferases are associated with pathological states, including malignancies and inflammatory conditions. Despite the potential for dynamic modifications of glycans on distal cell surfaces and in the extracellular milieu, the glycan-modifying activities present in systemic circulation have not been systematically examined. Here, we describe an evaluation of blood-borne sialyl-, galactosyl- and fucosyltransferase activities that act upon the four common terminal glycan precursor motifs, GlcNAc monomer, Gal(β3)GlcNAc, Gal(β4)GlcNAc and Gal(β3)GalNAc, to produce more complex glycan structures. Data from radioisotope assays and detailed product analysis by sequential tandem mass spectrometry show that blood has the capacity to generate many of the well-recognized and important glycan motifs, including the Lewis, sialyl-Lewis, H- and Sialyl-T antigens. While many of these glycosyltransferases are freely circulating in the plasma, human and mouse platelets are important carriers for others, including ST3Gal-1 and β4GalT. Platelets compartmentalize glycosyltransferases and release them upon activation. Human platelets are also carriers for large amounts of ST6Gal-1 and the α3-sialyl to Gal(β4)GlcNAc sialyltransferases, both of which are conspicuously absent in mouse platelets. This study highlights the capability of circulatory glycosyltransferases, which are dynamically controlled by platelet activation, to remodel cell surface glycans and alter cell behavior.


Thyroid | 2010

Expressions of vascular endothelial growth factor and nitric oxide synthase III in the thyroid gland of ovariectomized rats are upregulated by estrogen and selective estrogen receptor modulators.

Luiz Felipe Bittencourt de Araújo; Renata Grozovsky; Mário José dos Santos Pereira; Jorge José de Carvalho; Mario Vaisman; Denise P. Carvalho

BACKGROUND Estrogen promotes the growth of thyroid cells. Therefore, we analyzed the influence of estrogen and selective estrogen receptor modulators (SERMs) on the expression of vascular endothelial growth factor (VEGF) and nitric oxide synthase III (NOS III) in the thyroid gland of ovariectomized (Ovx) rats. METHODS Wistar rats were divided into five groups, and bilateral ovariectomies were performed, except on the Sham-operated controls (Sham). Rats were grouped as follows: Sham; Ovx; and Ovx rats treated with daily subcutaneous injections of estradiol benzoate 3.5 microg/kg, tamoxifen 2.5 mg/kg, or raloxifene 2.5 mg/kg for 50 consecutive days. Control animals received vehicle (propyleneglycol), and at the end of the treatment, rats were sacrificed. The thyroid glands were excised, weighed, and processed for analysis of the expression of VEGF or NOS III by immunohistochemistry. The mean vascular areas were evaluated by immunodetection of alpha-smooth muscle actin. RESULTS Thyroid weight and mean vascular area were lower in Ovx as compared with Sham, Ovx + estradiol benzoate, Ovx + Tam, or Ovx + Ral (p < 0.01). VEGF (p < 0.01) and NOS III expressions (p < 0.05) were significantly lower in the Ovx group, as compared with Sham, Ovx + estradiol benzoate, Ovx + Tam, and Ovx + Ral. Immunoreactivity for both VEGF and NOS III was mainly detected in the cytoplasm of the follicular epithelial cells. CONCLUSIONS Our data suggest that estrogen and SERMs regulate the thyroid gland vascularization and that tamoxifen and raloxifene behave like estrogen does. Estrogen and SERMs upregulate VEGF and NOS III in such a way as to reverse the effects detected on the thyroid microvasculature of the Ovx rats.

Collaboration


Dive into the Renata Grozovsky's collaboration.

Top Co-Authors

Avatar

Karin M. Hoffmeister

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hervé Falet

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Silvia Giannini

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Haley Ramsey

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise P. Carvalho

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

John H. Hartwig

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terese Jönsson

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge