Karin Nadrowski
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karin Nadrowski.
Ecological Monographs | 2011
Helge Bruelheide; Martin Böhnke; Sabine Both; Teng Fang; Thorsten Assmann; Martin Baruffol; Jürgen Bauhus; François Buscot; Xiao-Yong Chen; Bing-Yang Ding; Walter Durka; Alexandra Erfmeier; Markus Fischer; Christian Geißler; Dali Guo; Liang-Dong Guo; Werner Härdtle; Jin-Sheng He; Andy Hector; Wenzel Kröber; Peter Kühn; Anne C. Lang; Karin Nadrowski; Kequan Pei; Michael Scherer-Lorenzen; Xuezheng Shi; Thomas Scholten; Andreas Schuldt; Stefan Trogisch; Goddert von Oheimb
Subtropical broad-leaved forests in southeastern China support a high diversity of woody plants. Using a comparative study design with 30 × 30 m plots (n = 27) from five successional stages ( 1 m in height in each plot and counted all woody recruits (bank of all seedlings ≤1 m in height) in each central 10 × 10 m quadrant of each plot. In addition, we measured a number of environmen...
Methods in Ecology and Evolution | 2014
Helge Bruelheide; Karin Nadrowski; Thorsten Assmann; Jürgen Bauhus; Sabine Both; François Buscot; Xiao-Yong Chen; Bing-Yang Ding; Walter Durka; Alexandra Erfmeier; Jessica L. M. Gutknecht; Dali Guo; Liang-Dong Guo; Werner Härdtle; Jin-Sheng He; Alexandra-Maria Klein; Peter Kühn; Yu Liang; Xiaojuan Liu; Stefan G. Michalski; Pascal A. Niklaus; Kequan Pei; Michael Scherer-Lorenzen; Thomas Scholten; Andreas Schuldt; Gunnar Seidler; Stefan Trogisch; Goddert von Oheimb; Erik Welk; Christian Wirth
Summary 1. Biodiversity–ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25� 8 9 25� 8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ‘ecoscape’ to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achiev
New Phytologist | 2015
Cheng Gao; Yu Zhang; Nan-Nan Shi; Yong Zheng; Liang Chen; Tesfaye Wubet; Helge Bruelheide; Sabine Both; François Buscot; Qiong Ding; Alexandra Erfmeier; Peter Kühn; Karin Nadrowski; Thomas Scholten; Liang-Dong Guo
Environmental selection and dispersal limitation are two of the primary processes structuring biotic communities in ecosystems, but little is known about these processes in shaping soil microbial communities during secondary forest succession. We examined the communities of ectomycorrhizal (EM) fungi in young, intermediate and old forests in a Chinese subtropical ecosystem, using 454 pyrosequencing. The EM fungal community consisted of 393 operational taxonomic units (OTUs), belonging to 21 EM fungal lineages, in which three EM fungal lineages and 11 EM fungal OTUs showed significantly biased occurrence among the young, intermediate and old forests. The EM fungal community was structured by environmental selection and dispersal limitation in old forest, but only by environmental selection in young, intermediate, and whole forests. Furthermore, the EM fungal community was affected by different factors in the different forest successional stages, and the importance of these factors in structuring EM fungal community dramatically decreased along the secondary forest succession series. This study suggests that different assembly mechanisms operate on the EM fungal community at different stages in secondary subtropical forest succession.
PLOS ONE | 2013
Christian Geißler; Karin Nadrowski; Peter Kühn; Martin Baruffol; Helge Bruelheide; Bernhard Schmid; Thomas Scholten
Throughfall kinetic energy (TKE) plays an important role in soil erosion in forests. We studied TKE as a function of biodiversity, functional diversity as well as structural stand variables in a secondary subtropical broad-leaved forest in the Gutianshan National Nature Reserve (GNNR) in south-east China, a biodiversity hotspot in the northern hemisphere with more than 250 woody species present. Using a mixed model approach we could identify significant effects of all these variables on TKE: TKE increased with rarefied tree species richness and decreased with increasing proportion of needle-leaved species and increasing leaf area index (LAI). Furthermore, for average rainfall amounts TKE was decreasing with tree canopy height whereas for high rainfall amounts this was not the case. The spatial pattern of throughfall was stable across several rain events. The temporal variation of TKE decreased with rainfall intensity and increased with tree diversity. Our results show that more diverse forest stands over the season have to cope with higher cumulative raindrop energy than less diverse stands. However, the kinetic energy (KE) of one single raindrop is less predictable in diverse stands since the variability in KE is higher. This paper is the first to contribute to the understanding of the ecosystem function of soil erosion prevention in diverse subtropical forests.
Journal of Ecology | 2016
Thomas Schroeder‐Georgi; Christian Wirth; Karin Nadrowski; Sebastian T. Meyer; Liesje Mommer; Alexandra Weigelt
Traits are powerful predictors of ecosystem functions pointing to underlying physiological and ecological processes. Plant individual performance results from the coordinated operation of many processes, ranging from nutrient uptake over organ turnover to photosynthesis, thus requiring a large set of traits for its prediction. For plant performance on higher hierarchical levels, e.g. populations, additional traits important for plant-plant and trophic interactions may be required which should even enlarge the spectrum of relevant predictor traits.(2)The goal of this study was to assess the importance of plant functional traits to predict individual and population performance of grassland species with particular focus on the significance of root traits. We tested this for 59 grassland species using 35 traits divided into three trait clusters: leaf traits (16), stature traits (8) and root traits (11), using individual biomass of mesocosm plants as a measure of individual performance and population biomass of monocultures as a measure of population performance. We applied structural equation models to disentangle direct effects of single traits on population biomass and indirect effects via individual plant biomass or shoot density.We tested multivariate trait effects on individual and population biomass to analyze whether the importance of different trait clusters shifts with increasing hierarchical integration from individuals to populations.(3)Traits of all three clusters significantly correlated with individual and population biomass. However, in spite of a number of significant correlations, above-below-ground linkages were generally week, with few exceptions like N content.(4)Stature traits exclusively affected population biomass indirectly via their effect on individual biomass, whereas root and leaf traits showed also direct effects and partly indirect effects via density.(5)The inclusion of root traits in multiple regression models improved the prediction of individual biomass compared to models with only above-ground information only slightly (95% vs. 93% of variance prediction with and without root traits, respectively) but was crucial for the prediction of population biomass (77% and 49%, respectively). Root traits were more important for plant performance than leaf traits and were even the most important predictors at the population level(6)Synthesis: Upscaling from the individual to the population level reflects an increasing number of processes requiring traits from different trait clusters for their prediction. Our results emphasize the importance of root traits for trait-based studies especially at higher organizational levels. Our approach provides a comprehensive framework acknowledging the hierarchical nature of trait influences. This is one step towards a more process-oriented assessment of trait-based approaches
PLOS ONE | 2013
Elisabeth Marquard; Bernhard Schmid; Christiane Roscher; Enrica De Luca; Karin Nadrowski; Wolfgang W. Weisser; Alexandra Weigelt
Numerous studies have reported positive effects of species richness on plant community productivity. Such biodiversity effects are usually quantified by comparing the performance of plant mixtures with reference monocultures. However, several mechanisms, such as the lack of resource complementarity and facilitation or the accumulation of detrimental agents, suggest that monocultures are more likely than mixtures to deteriorate over time. Increasing biodiversity effects over time could therefore result from declining monocultures instead of reflecting increases in the functioning of mixtures. Commonly, the latter is assumed when positive trends in biodiversity effects occur. Here, we analysed the performance of 60 grassland species growing in monocultures and mixtures over 9 years in a biodiversity experiment to clarify whether their temporal biomass dynamics differed and whether a potential decline of monocultures contributed significantly to the positive net biodiversity effect observed. Surprisingly, individual species’ populations produced, on average, significantly more biomass per unit area when growing in monoculture than when growing in mixture. Over time, productivity of species decreased at a rate that was, on average, slightly more negative in monocultures than in mixtures. The mean net biodiversity effect across all mixtures was continuously positive and ranged between 64–217 g per m2. Short-term increases in the mean net biodiversity effect were only partly due to deteriorating monocultures and were strongly affected by particular species gaining dominance in mixtures in the respective years. We conclude that our species performed, on average, comparably in monocultures and mixtures; monoculture populations being slightly more productive than mixture populations but this trend decreased over time. This suggested that negative feedbacks had not yet affected monocultures strongly but could potentially become more evident in the future. Positive biodiversity effects on aboveground productivity were heavily driven by a small, but changing, set of species that behaved differently from the average species.
PLOS ONE | 2014
Karin Nadrowski; Katherina A. Pietsch; Martin Baruffol; Sabine Both; Jessica L. M. Gutknecht; Helge Bruelheide; Heike Heklau; Anja Kahl; Tiemo Kahl; Pascal A. Niklaus; Wenzel Kröber; Xiaojuan Liu; Xiangcheng Mi; Stefan G. Michalski; Goddert von Oheimb; Oliver Purschke; Bernhard Schmid; Teng Fang; Erik Welk; Christian Wirth
Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level.
Ecology and Evolution | 2015
Claas-Thido Pfaff; Birgitta König-Ries; Anne C. Lang; Sophia Ratcliffe; Christian Wirth; Xingxing Man; Karin Nadrowski
We are witnessing a growing gap separating primary research data from derived data products presented as knowledge in publications. Although journals today more often require the underlying data products used to derive the results as a prerequisite for a publication, the important link to the primary data is lost. However, documenting the postprocessing steps of data linking, the primary data with derived data products has the potential to increase the accuracy and the reproducibility of scientific findings significantly. Here, we introduce the rBEFdata R package as companion to the collaborative data management platform BEFdata. The R package provides programmatic access to features of the platform. It allows to search for data and integrates the search with external thesauri to improve the data discovery. It allows to download and import data and metadata into R for analysis. A batched download is available as well which works along a paper proposal mechanism implemented by BEFdata. This feature of BEFdata allows to group primary data and metadata and streamlines discussions and collaborations revolving around a certain research idea. The upload functionality of the R package in combination with the paper proposal mechanism of the portal allows to attach derived data products and scripts directly from R, thus addressing major aspects of documenting data postprocessing. We present the core features of the rBEFdata R package along an ecological analysis example and further discuss the potential of postprocessing documentation for data, linking primary data with derived data products and knowledge.
Harmful Algae | 2016
Susanne Dunker; Karin Nadrowski; Torsten Jakob; Peter Kasprzak; Annette Becker; Uwe Langner; Christfried Kunath; Stan Harpole; Christian Wilhelm
This study looks at two facets of dominant phytoplankton classes during phytoplankton succession. A detailed assessment of this issue is of special interest with regard to realized niches from a theoretical point of view but also for lake management as practical application. A realized niche mirrors the functional adaptability of an organism in a lake-specific constellation of environmental parameters. Therefore, the characterization of realized niches could be a key factor for management of problematic waters. Different strategies exist to control eutrophication and the risk of blooms by harmful algae. During the last decades, many restoration measures were initiated to manage eutrophicated inland lakes. In the past, it has become evident several times that restoration strategies do not necessarily lead to a reduction of biomass of undesirable cyanobacteria but can even promote their development. Due to this uncertainty of success and the high costs for remediation strategies, new prediction tools are required - ideally, based on routine monitoring data. Therefore, we developed a new method to extract potential optimal growth conditions (POGC) as indicators of realized niches for different phytoplankton taxa from existing data to improve existing strategies used in lake remediation and restoration. The analysis presented in this work is based on dominance pattern of different phytoplankton groups relative to environmental variables. Interpretation of these dominance patterns as indicators of POGC showed distinct pattern for several phytoplankton classes for all investigated objects. We identified low nitrogen and phosphate concentrations as favorable condition for cyanobacteria in Lake Auensee and Lake Feldberger Haussee. The reservoir Bleilochtalsperre showed a high N/P-concentration and cyanobacteria dominance was generally very low.
Archive | 2001
Karin Nadrowski; Gottfried Jetschke
The objective of this study was to understand how landscape structure influences primary productivity in arid shrublands. We propose that analyzing spatial arrangement of shrub patches can help to restore degraded landscapes by indicating limiting factors to landscape productivity.