Karina Serban
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karina Serban.
Molecular Medicine | 2012
Angelia D. Lockett; Mary Van Demark; Yuan Gu; Kelly S. Schweitzer; Ninotchka L. Sigua; Krzysztof Kamocki; Iwona Fijalkowska; Jana Garrison; Amanda J. Fisher; Karina Serban; Robert A. Wise; Terence R. Flotte; Christian Mueller; Robert G. Presson; Horia I. Petrache; Rubin M. Tuder; Irina Petrache
Abstractα-1 Antitrypsin (A1AT) is a serpin with a major protective effect against cigarette smoke-induced emphysema development, and patients with mutations of the A1AT gene display a markedly increased risk for developing emphysema. We reported that A1AT protects lung endothelial cells from apoptosis and inhibits caspase-3 activity. It is not clear if cigarette smoking or A1AT mutations alter the caspase-3 inhibitory activity of A1AT and if this serpin alters the function of other caspases. We tested the hypothesis that the caspase-3 inhibitory activity of A1AT is impaired by cigarette smoking and that the A1AT RCL, the key antiprotease domain of the serpin, is required for its interaction with the caspase. We examined the caspase-3 inhibitory activity of human A1AT purified from plasma of actively smoking and nonsmoking individuals, either affected or unaffected with chronic obstructive pulmonary disease. We also tested the caspase inhibitory activity of two mutant forms of A1AT, the recombinant human piZZ and the RCL-deleted (RCL-null) A1AT forms. A1AT purified from the blood of active smokers exhibited marked attenuation in its caspase-3 inhibitory activity, independent of disease status. In vitro exposure of the normal (MM) form of A1AT to cigarette smoke extract reduced its ability to interact with caspase-3, measured by isothermal titration calorimetry, as did the deletion of the RCL, but not the ZZ point mutation. In cell-free assays A1AT was capable of inhibiting all executioner caspases, -3, -7 and especially -6, but not the initiator or inflammatory caspases. The inhibitory effect of A1AT against caspase-6 was tested in vivo, where overexpression of both human MM and ZZ-A1AT via adeno-associated virus transduction significantly protected against apoptosis and against airspace damage induced by intratracheal instillation of caspase-6 in mice. These data indicate a specific inhibitory effect of A1AT on executioner caspases, which is profoundly attenuated by active exposure to cigarette smoking and is dependent on the protein RCL, but is not affected by the PiZZ mutation.
PLOS ONE | 2014
Angelia D. Lockett; Mary Beth Brown; Nieves Santos-Falcon; Natalia I. Rush; Houssam Oueini; Amber J. Oberle; Esther Bolanis; Miryam A. Fragoso; Daniela N. Petrusca; Karina Serban; Kelly S. Schweitzer; Robert G. Presson; Michael Campos; Irina Petrache
The homeostatic lung protective effects of alpha-1 antitrypsin (A1AT) may require the transport of circulating proteinase inhibitor across an intact lung endothelial barrier. We hypothesized that uninjured pulmonary endothelial cells transport A1AT to lung epithelial cells. Purified human A1AT was rapidly taken up by confluent primary rat pulmonary endothelial cell monolayers, was secreted extracellularly, both apically and basolaterally, and was taken up by adjacent rat lung epithelial cells co-cultured on polarized transwells. Similarly, polarized primary human lung epithelial cells took up basolaterally-, but not apically-supplied A1AT, followed by apical secretion. Evidence of A1AT transcytosis across lung microcirculation was confirmed in vivo by two-photon intravital microscopy in mice. Time-lapse confocal microscopy indicated that A1AT co-localized with Golgi in the endothelium whilst inhibition of the classical secretory pathway with tunicamycin significantly increased intracellular retention of A1AT. However, inhibition of Golgi secretion promoted non-classical A1AT secretion, associated with microparticle release. Polymerized A1AT or A1AT supplied to endothelial cells exposed to soluble cigarette smoke extract had decreased transcytosis. These results suggest previously unappreciated pathways of A1AT bidirectional uptake and secretion from lung endothelial cells towards the alveolar epithelium and airspaces. A1AT trafficking may determine its functional bioavailablity in the lung, which could be impaired in individuals exposed to smoking or in those with A1AT deficiency.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2011
Lan Ma; Melanie Brown; Paul Kogut; Karina Serban; Xiaojing Li; John F. McConville; Bohao Chen; J. Kelley Bentley; Marc B. Hershenson; Nickolai O. Dulin; Julian Solway; Blanca Camoretti-Mercado
Airway smooth muscle (ASM) hypertrophy is a cardinal feature of severe asthma, but the underlying molecular mechanisms remain uncertain. Forced protein kinase B/Akt 1 activation is known to induce myocyte hypertrophy in other muscle types, and, since a number of mediators present in asthmatic airways can activate Akt signaling, we hypothesized that Akt activation could contribute to ASM hypertrophy in asthma. To test this hypothesis, we evaluated whether Akt activation occurs naturally within airway myocytes in situ, whether Akt1 activation is sufficient to cause hypertrophy of normal airway myocytes, and whether such hypertrophy is accompanied by excessive accumulation of contractile apparatus proteins (contractile phenotype maturation). Immunostains of human airway sections revealed concordant activation of Akt (reflected in Ser(473) phosphorylation) and of its downstream effector p70(S6Kinase) (reflected in Thr(389) phosphorylation) within airway muscle bundles, but there was no phosphorylation of the alternative Akt downstream target glycogen synthase kinase (GSK) 3β. Artificial overexpression of constitutively active Akt1 (by plasmid transduction or lentiviral infection) caused a progressive increase in size and protein content of cultured canine tracheal myocytes and increased p70(S6Kinase) phosphorylation but not GSK3β phosphorylation; however, constitutively active Akt1 did not cause disproportionate overaccumulation of smooth muscle (sm) α-actin and SM22. Furthermore, mRNAs encoding sm-α-actin and SM22 were reduced. These results indicate that forced Akt1 signaling causes hypertrophy of cultured airway myocytes without inducing further contractile phenotypic maturation, possibly because of opposing effects on contractile protein gene transcription and translation, and suggest that natural activation of Akt1 plays a similar role in asthmatic ASM.
Journal of Cystic Fibrosis | 2015
Charles A. McCaslin; Daniela N. Petrusca; Christophe Poirier; Karina Serban; Gregory G. Anderson; Irina Petrache
Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophage cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. A mannuronic-specific alginate lyase did not restore efferocytosis inhibited by exogenous guluronic-rich marine alginate, but had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to chronic airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate production and synergy with LPS, suggesting that alginate lyase may be an attractive therapeutic approach to airway inflammation in cystic fibrosis and other chronic obstructive pulmonary diseases characterized by P. aeruginosa colonization.
PLOS ONE | 2017
Karina Serban; Daniela N. Petrusca; Andrew Mikosz; Christophe Poirier; Angelia D. Lockett; Lauren Saint; Matthew J. Justice; Homer L. Twigg; Michael Campos; Irina Petrache
Cigarette smoking (CS), the main risk factor for COPD (chronic obstructive pulmonary disease) in developed countries, decreases alveolar macrophages (AM) clearance of both apoptotic cells and bacterial pathogens. This global deficit of AM engulfment may explain why active smokers have worse outcomes of COPD exacerbations, episodes characterized by airway infection and inflammation that carry high morbidity and healthcare cost. When administered as intravenous supplementation, the acute phase-reactant alpha-1 antitrypsin (A1AT) reduces the severity of COPD exacerbations in A1AT deficient (AATD) individuals and of bacterial pneumonia in murine models, but the effect of A1AT on AM scavenging functions has not been reported. Apoptotic cell clearance (efferocytosis) was measured in human AM isolated from patients with COPD, in primary rat AM or differentiated monocytes exposed to CS ex vivo, and in AM recovered from mice exposed to CS. A1AT (100 μg/mL, 16 h) significantly ameliorated efferocytosis (by ~50%) in AM of active smokers or AM exposed ex vivo to CS. A1AT significantly improved AM global engulfment, including phagocytosis, even when cells were simultaneously challenged with apoptotic and Fc-coated (bacteria-like) targets. The improved efferocytosis in A1AT-treated macrophages was associated with inhibition of tumor necrosis factor-α converting enzyme (TACE) activity, decreased mannose receptor shedding, and markedly increased abundance of efferocytosis receptors (mannose- and phosphatidyl serine receptors and the scavenger receptor B2) on AM plasma membrane. Directed airway A1AT treatment (via inhalation of a nebulized solution) restored in situ airway AM efferocytosis after CS exposure in mice. The amelioration of CS-exposed AM global engulfment may render A1AT as a potential therapy for COPD exacerbations.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2015
Angelia D. Lockett; Daniela N. Petrusca; Matthew J. Justice; Christophe Poirier; Karina Serban; Natalia I. Rush; Malgorzata M. Kamocka; Dan Predescu; Sanda Predescu; Irina Petrache
In addition to exerting a potent anti-elastase function, α-1 antitrypsin (A1AT) maintains the structural integrity of the lung by inhibiting endothelial inflammation and apoptosis. A main serpin secreted in circulation by hepatocytes, A1AT requires uptake by the endothelium to achieve vasculoprotective effects. This active uptake mechanism, which is inhibited by cigarette smoking (CS), involves primarily clathrin- but also caveola-mediated endocytosis and may require active binding to a receptor. Because circulating A1AT binds to high-density lipoprotein (HDL), we hypothesized that scavenging receptors are candidates for endothelial uptake of the serpin. Although the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) internalizes only elastase-bound A1AT, the scavenger receptor B type I (SR-BI), which binds and internalizes HDL and is modulated by CS, may be involved in A1AT uptake. Transmission electron microscopy imaging of colloidal gold-labeled A1AT confirmed A1AT endocytosis in both clathrin-coated vesicles and caveolae in endothelial cells. SR-BI immunoprecipitation identified binding to A1AT at the plasma membrane. Pretreatment of human lung microvascular endothelial cells with SR-B ligands (HDL or LDL), knockdown of SCARB1 expression, or neutralizing SR-BI antibodies significantly reduced A1AT uptake by 30-50%. Scarb1 null mice exhibited decreased A1AT lung content following systemic A1AT administration and reduced lung anti-inflammatory effects of A1AT supplementation during short-term CS exposure. In turn, A1AT supplementation increased lung SR-BI expression and modulated circulating lipoprotein levels in wild-type animals. These studies indicate that SR-BI is an important mediator of A1AT endocytosis in pulmonary endothelium and suggest a cross talk between A1AT and lipoprotein regulation of vascular functions.
Chest | 2015
Chris Mosher; Houssam Oueini; Karina Serban
Respiratory Research | 2018
Kevin Ni; Amar Gill; Victor Tseng; Andrew Mikosz; Kengo Koike; Erica L. Beatman; Cassie Y. Xu; Danting Cao; Fabienne Gally; Kara J. Mould; Karina Serban; Kelly S. Schweitzer; Keith L. March; William J. Janssen; Eva Nozik-Grayck; Stavros Garantziotis; Irina Petrache
PMC | 2016
Karina Serban; Samin Rezania; Daniela N. Petrusca; Christophe Poirier; Danting Cao; Matthew J. Justice; Milan Patel; Irina B. Tsvetkova; Krzysztof Kamocki; Andrew Mikosz; Kelly S. Schweitzer; Sean Jacobson; Angelo A. Cardoso; Nadia Carlesso; Walter C. Hubbard; Katerina Kechris; Bogdan Dragnea; Evgeny Berdyshev; Jeanette McClintock; Irina Petrache
Archive | 2016
Blanca Camoretti-Mercado; Bohao Chen; J. Kelley Bentley; Marc B. Hershenson; Nickolai O. Dulin; Julian Solway; Lan Ma; Melanie Brown; Paul Kogut; Karina Serban; Xiaojing Li; John F. McConville