Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karine Reiter is active.

Publication


Featured researches published by Karine Reiter.


Journal of Biological Chemistry | 2009

Structure of the Plasmodium falciparum Circumsporozoite Protein, a Leading Malaria Vaccine Candidate

Matthew Plassmeyer; Karine Reiter; Richard L. Shimp; Svetlana Kotova; Paul D. Smith; Darrell E. Hurt; Brent House; Xiaoyan Zou; Yanling Zhang; Merrit Hickman; Onyinyechukwu Uchime; Raul Herrera; Vu Thuong Nguyen; Jacqueline Glen; Jacob Lebowitz; Albert J. Jin; Louis H. Miller; Nicholas J. MacDonald; Yimin Wu; David L. Narum

The Plasmodium falciparum circumsporozoite protein (CSP) is critical for sporozoite function and invasion of hepatocytes. Given its critical nature, a phase III human CSP malaria vaccine trial is ongoing. The CSP is composed of three regions as follows: an N terminus that binds heparin sulfate proteoglycans, a four amino acid repeat region (NANP), and a C terminus that contains a thrombospondin-like type I repeat (TSR) domain. Despite the importance of CSP, little is known about its structure. Therefore, recombinant forms of CSP were produced by expression in both Escherichia coli (Ec) and then refolded (EcCSP) or in the methylotrophic yeast Pichia pastoris (PpCSP) for structural analyses. To analyze the TSR domain of recombinant CSP, conformation-dependent monoclonal antibodies that recognized unfixed P. falciparum sporozoites and inhibited sporozoite invasion of HepG2 cells in vitro were identified. These monoclonal antibodies recognized all recombinant CSPs, indicating the recombinant CSPs contain a properly folded TSR domain structure. Characterization of both EcCSP and PpCSP by dynamic light scattering and velocity sedimentation demonstrated that both forms of CSP appeared as highly extended proteins (Rh 4.2 and 4.58 nm, respectively). Furthermore, high resolution atomic force microscopy revealed flexible, rod-like structures with a ribbon-like appearance. Using this information, we modeled the NANP repeat and TSR domain of CSP. Consistent with the biochemical and biophysical results, the repeat region formed a rod-like structure about 21–25 nm in length and 1.5 nm in width. Thus native CSP appears as a glycosylphosphatidylinositol-anchored, flexible rod-like protein on the sporozoite surface.


Vaccine | 2013

Development of a Pfs25-EPA malaria transmission blocking vaccine as a chemically conjugated nanoparticle

Richard L. Shimp; Christopher Rowe; Karine Reiter; Beth Chen; Vu Nguyen; Joan Aebig; Kelly M. Rausch; Krishan Kumar; Yimin Wu; Albert J. Jin; David S. Jones; David L. Narum

Successful efforts to control infectious diseases have often required the use of effective vaccines. The current global strategy for control of malaria, including elimination and eradication will also benefit from the development of an effective vaccine that interrupts malaria transmission. To this end, a vaccine that disrupts malaria transmission within the mosquito host has been investigated for several decades targeting a 25 kDa ookinete specific surface protein, identified as Pfs25. Phase 1 human trial results using a recombinant Pfs25H/Montanide ISA51 formulation demonstrated that human Pfs25 specific antibodies block parasite infectivity to mosquitoes; however, the extent of blocking was likely insufficient for an effective transmission blocking vaccine. To overcome the poor immunogenicity, processes to produce and characterize recombinant Pfs25H conjugated to a detoxified form of Pseudomonas aeruginosa exoprotein A (EPA) have been developed and used to manufacture a cGMP pilot lot for use in human clinical trials. The Pfs25-EPA conjugate appears as a nanoparticle with an average molar mass in solution of approximately 600 kDa by static light scattering with an average diameter 20 nm (range 10-40 nm) by dynamic light scattering. The molar ratio of Pfs25H to EPA is about 3 to 1 by amino acid analysis, respectively. Outbred mice immunized with the Pfs25-EPA conjugated nanoparticle formulated on Alhydrogel(®) had a 75-110 fold increase in Pfs25H specific antibodies when compared to an unconjugated Pfs25H/Alhydrogel(®) formulation. A phase 1 human trial using the Pfs25-EPA/Alhydrogel(®) formulation is ongoing in the United States.


Clinical and Vaccine Immunology | 2012

Structural and immunological analysis of anthrax recombinant protective antigen adsorbed to aluminum hydroxide adjuvant.

Leslie Wagner; Anita Verma; Bruce D. Meade; Karine Reiter; David L. Narum; Rebecca A. Brady; Stephen F. Little; Drusilla L. Burns

ABSTRACT New anthrax vaccines currently under development are based on recombinant protective antigen (rPA) and formulated with aluminum adjuvant. Because long-term stability is a desired characteristic of these vaccines, an understanding of the effects of adsorption to aluminum adjuvants on the structure of rPA is important. Using both biophysical and immunological techniques, we compared the structure and immunogenicity of freshly prepared rPA-Alhydrogel formulations to that of formulations stored for 3 weeks at either room temperature or 37°C in order to assess the changes in rPA structure that might occur upon long-term storage on aluminum adjuvant. Intrinsic fluorescence emission spectra of tryptophan residues indicated that some tertiary structure alterations of rPA occurred during storage on Alhydrogel. Using anti-PA monoclonal antibodies to probe specific regions of the adsorbed rPA molecule, we found that two monoclonal antibodies that recognize epitopes located in domain 1 of PA exhibited greater reactivity to the stored formulations than to freshly prepared formulations. Immunogenicity of rPA-Alhydrogel formulations in mice was assessed by measuring the induction of toxin-neutralizing antibodies, as well as antibodies reactive to 12-mer peptides spanning the length of PA. Mice immunized with freshly prepared formulations developed significantly higher toxin-neutralizing antibody titers than mice immunized with the stored preparations. In contrast, sera from mice immunized with stored preparations exhibited increased reactivity to nine 12-mer peptides corresponding to sequences located throughout the rPA molecule. These results demonstrate that storage of rPA-Alhydrogel formulations can lead to structural alteration of the protein and loss of the ability to elicit toxin-neutralizing antibodies.


Journal of Biological Chemistry | 2013

Salivary Antigen-5/CAP Family Members Are Cu2+-dependent Antioxidant Enzymes That Scavenge O2⨪ and Inhibit Collagen-induced Platelet Aggregation and Neutrophil Oxidative Burst

Teresa C. F. Assumpção; Dongying Ma; Alexandra Schwarz; Karine Reiter; Jaime M. Santana; John F. Andersen; José M. C. Ribeiro; Glenn Nardone; Lee L. Yu; Ivo M. B. Francischetti

Background: The function of most salivary antigen-5/CAP members has remained elusive for decades. Results: Antigen-5 members bind Cu2+ and exhibit antioxidant activity by scavenging O2⨪. It inhibits platelet aggregation by collagen and neutrophil oxidative burst. Conclusion: Antigen-5 emerges as a novel family of antioxidant enzymes targeting O2⨪. Significance: Scavenging O2⨪ is conceivably associated with decreased inflammation in the microcirculation and may assist blood-sucking insects to successfully feed on blood. The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 μg/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin α2β1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2⨪ generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2⨪ generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu2+, which provides redox potential for catalytic removal of O2⨪. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ∼100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu2+ and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu2+-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism.


Infection and Immunity | 2013

Overcoming allelic specificity by immunization with five allelic forms of Plasmodium falciparum apical membrane antigen 1.

Kazutoyo Miura; Raul Herrera; Ababacar Diouf; Hong Zhou; Jianbing Mu; Zonghui Hu; Nicholas J. MacDonald; Karine Reiter; Vu Nguyen; Richard L. Shimp; Kavita Singh; David L. Narum; Carole A. Long; Louis H. Miller

ABSTRACT Apical membrane antigen 1 (AMA1) is a leading vaccine candidate, but the allelic polymorphism is a stumbling block for vaccine development. We previously showed that a global set of AMA1 haplotypes could be grouped into six genetic populations. Using this information, six recombinant AMA1 proteins representing each population were produced. Rabbits were immunized with either a single recombinant AMA1 protein or mixtures of recombinant AMA1 proteins (mixtures of 4, 5, or 6 AMA1 proteins). Antibody levels were measured by enzyme-linked immunosorbent assay (ELISA), and purified IgG from each rabbit was used for growth inhibition assay (GIA) with 12 different clones of parasites (a total of 108 immunogen-parasite combinations). Levels of antibodies to all six AMA1 proteins were similar when the antibodies were tested against homologous antigens. When the percent inhibitions in GIA were plotted against the number of ELISA units measured with homologous AMA1, all data points followed a sigmoid curve, regardless of the immunogen. In homologous combinations, there were no differences in the percent inhibition between the single-allele and allele mixture groups. However, all allele mixture groups showed significantly higher percent inhibition than the single-allele groups in heterologous combinations. The 5-allele-mixture group showed significantly higher inhibition to heterologous parasites than the 4-allele-mixture group. On the other hand, there was no difference between the 5- and 6-allele-mixture groups. These data indicate that mixtures with a limited number of alleles may cover a majority of the parasite population. In addition, using the data from 72 immunogen-parasite combinations, we mathematically identified 13 amino acid polymorphic sites which significantly impact GIA activities. These results could be a foundation for the rational design of a future AMA1 vaccine.


Infection and Immunity | 2008

Identification and Characterization of the Plasmodium yoelii PyP140/RON4 Protein, an Orthologue of Toxoplasma gondii RON4, Whose Cysteine-Rich Domain Does Not Protect against Lethal Parasite Challenge Infection

David L. Narum; Vu Nguyen; Yanling Zhang; Jacqueline Glen; Richard L. Shimp; Lynn Lambert; Irene T. Ling; Karine Reiter; Solabomi A. Ogun; Carole A. Long; Anthony A. Holder; Raul Herrera

ABSTRACT Previously, we identified a Plasmodium yoelii YM 140-kDa merozoite protein, designated PyP140, which formed a complex with apical membrane antigen 1 (AMA1). Furthermore, we produced a nonprotective monoclonal antibody (MAb), 48F8, that immunoprecipitated metabolically labeled PyP140 and localized the protein to the merozoites apical end and, less frequently, to the merozoite surface, as observed by immunofluorescence assay (IFA). Here, using MAb 48F8, we have identified the pyp140 gene by screening a P. yoelii λ-Zap cDNA expression library. The pyp140 cDNA covers approximately 90% of the putative open reading frame (ORF) of PY02159 from the P. yoelii NL genome sequencing project. Analysis of the complete gene identified the presence of two introns. The ORF encodes a 102,407-Da protein with an amino-terminal signal sequence, a series of three unique types of repeats, and a cysteine-rich region. The binding site of MAb 48F8 was also identified. A BLAST search with the deduced amino acid sequence shows significant similarity with the Toxoplasma gondii RON4 protein and the Plasmodium falciparum RON4 protein, and the sequence is highly conserved in other Plasmodium species. We produced the cysteine-rich domain of PyP140/RON4 by using the Pichia pastoris expression system and characterized the recombinant protein biochemically and biophysically. BALB/c mice immunized with the protein formulated in oil-in-water adjuvants produced antibodies that recognize parasitized erythrocytes by IFA and native PyP140/RON4 by immunoblotting but failed to protect against a lethal P. yoelii YM infection. Our results show that PyP140/RON4 is located within the rhoptries or micronemes. It may associate in part with AMA1, but the conserved cysteine-rich domain does not appear to elicit inhibitory antibodies, a finding that is supported by the marked sequence conservation in this protein within Plasmodium spp., suggesting that it is not under immune pressure.


Eukaryotic Cell | 2012

Analysis of the Conformation and Function of the Plasmodium falciparum Merozoite Proteins MTRAP and PTRAMP

Onyinyechukwu Uchime; Raul Herrera; Karine Reiter; Svetlana Kotova; Richard L. Shimp; Kazutoyo Miura; Dominique Jones; Jacob Lebowitz; Xavier Ambroggio; Darrell E. Hurt; Albert J. Jin; Carole A. Long; Louis H. Miller; David L. Narum

ABSTRACT Thrombospondin repeat (TSR)-like domains are structures involved with cell adhesion. Plasmodium falciparum proteins containing TSR domains play crucial roles in parasite development. In particular, the preerythrocytic P. falciparum circumsporozoite protein is involved in hepatocyte invasion. The importance of these domains in two other malaria proteins, the merozoite-specific thrombospondin-related anonymous protein (MTRAP) and the thrombospondin-related apical membrane protein (PTRAMP), were assessed using near-full-length recombinant proteins composed of the extracellular domains produced in Escherichia coli. MTRAP is thought to be released from invasive organelles identified as micronemes during merozoite invasion to mediate motility and host cell invasion through an interaction with aldolase, an actin binding protein involved in the moving junction. PTRAMP function remains unknown. In this study, the conformation of recombinant MTRAP (rMTRAP) appeared to be a highly extended protein (2 nm by 33 nm, width by length, respectively), whereas rPTRAMP had a less extended structure. Using an erythrocyte binding assay, rMTRAP but not rPTRAMP bound human erythrocytes; rMTRAP binding was mediated through the TSR domain. MTRAP- and in general PTRAMP-specific antibodies failed to inhibit P. falciparum development in vitro. Altogether, MTRAP is a highly extended bifunctional protein that binds to an erythrocyte receptor and the merozoite motor.


Infection and Immunity | 2015

Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains

Raul Herrera; Charles Anderson; Krishan Kumar; Alvaro Molina-Cruz; Vu Nguyen; Martin Burkhardt; Karine Reiter; Richard L. Shimp; Randall F. Howard; Prakash Srinivasan; Michael J. Nold; Daniel Ragheb; Lirong Shi; Mark DeCotiis; Joan Aebig; Lynn Lambert; Kelly M. Rausch; Olga Muratova; Albert J. Jin; Steven G. Reed; Photini Sinnis; Carolina Barillas-Mury; Patrick E. Duffy; Nicholas J. MacDonald; David L. Narum

ABSTRACT The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study indicated that the N-terminal domain might improve the efficacy of a new CSP vaccine. Using a panel of CSP-specific monoclonal antibodies, well-characterized recombinant CSPs, label-free quantitative proteomics, and in vitro inhibition of sporozoite invasion, we show that native CSP is N-terminally processed in the mosquito host and undergoes a reversible conformational change to mask some epitopes in the N- and C-terminal domains until the sporozoite interacts with the liver hepatocyte. Our findings show the importance of understanding processing and the biophysical change in conformation, possibly due to a mechanical or molecular signal, and may aid in the development of a new CSP vaccine.


Microbes and Infection | 2009

Enhanced antibody responses to Plasmodium falciparum Pfs28 induced in mice by conjugation to ExoProtein A of Pseudomonas aeruginosa with an improved procedure.

Feng Qian; Joan Aebig; Karine Reiter; Emma Barnafo; Yanling Zhang; Richard L. Shimp; Kelly M. Rausch; David S. Jones; Darning Zhu; Lynn Lambert; Gregory Mullen; David L. Narum; Louis H. Miller; Yimin Wu

In this paper we report our efforts to enhance the immunogenicity of Pfs28, a transmission blocking vaccine candidate of Plasmodium falciparum, using a strategy of chemical conjugation. With an improved procedure, Pfs28 was covalently coupled to the mutant and non-toxic ExoProtein A of Pseudomonas aeruginosa by the reaction between thiolated antigen and maleimide modified carrier protein. The optimized process resulted in a higher antigen-carrier conjugation ratio, and the conjugation product could be purified using single-step size-exclusion chromatography. A significant increase in immunogenicity measured by ELISA was observed in mice immunized with conjugated Pfs28 as compared to unconjugated Pfs28.


Infection and Immunity | 2013

Use of Site-Directed Mutagenesis To Model the Effects of Spontaneous Deamidation on the Immunogenicity of Bacillus anthracis Protective Antigen

Anita Verma; Beth McNichol; Rocío I. Domínguez-Castillo; Juan C. Amador-Molina; Juan L. Arciniega; Karine Reiter; Bruce D. Meade; Miriam M. Ngundi; Scott Stibitz; Drusilla L. Burns

ABSTRACT Long-term stability is a desired characteristic of vaccines, especially anthrax vaccines, which must be stockpiled for large-scale use in an emergency situation; however, spontaneous deamidation of purified vaccine antigens has the potential to adversely affect vaccine immunogenicity over time. In order to explore whether spontaneous deamidation of recombinant protective antigen (rPA)—the major component of new-generation anthrax vaccines—affects vaccine immunogenicity, we created a “genetically deamidated” form of rPA using site-directed mutagenesis to replace six deamidation-prone asparagine residues, at positions 408, 466, 537, 601, 713, and 719, with either aspartate, glutamine, or alanine residues. We found that the structure of the six-Asp mutant rPA was not significantly altered relative to that of the wild-type protein as assessed by circular dichroism (CD) spectroscopy and biological activity. In contrast, immunogenicity of aluminum-adjuvanted six-Asp mutant rPA, as measured by induction of toxin-neutralizing antibodies, was significantly lower than that of the corresponding wild-type rPA vaccine formulation. The six-Gln and six-Ala mutants also exhibited lower immunogenicity than the wild type. While the wild-type rPA vaccine formulation exhibited a high level of immunogenicity initially, its immunogenicity declined significantly upon storage at 25°C for 4 weeks. In contrast, the immunogenicity of the six-Asp mutant rPA vaccine formulation was low initially but did not change significantly upon storage. Taken together, results from this study suggest that spontaneous deamidation of asparagine residues predicted to occur during storage of rPA vaccines would adversely affect vaccine immunogenicity and therefore the storage life of vaccines.

Collaboration


Dive into the Karine Reiter's collaboration.

Top Co-Authors

Avatar

David L. Narum

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard L. Shimp

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nicholas J. MacDonald

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Raul Herrera

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Louis H. Miller

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar

Patrick E. Duffy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yimin Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carole A. Long

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joan Aebig

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kelly M. Rausch

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge