Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl Dykema is active.

Publication


Featured researches published by Karl Dykema.


Nature | 2011

Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma

Ignacio Varela; Patrick Tarpey; Keiran Raine; Dachuan Huang; Choon Kiat Ong; Philip Stephens; Helen Davies; David Jones; Meng-Lay Lin; Jon Teague; Graham R. Bignell; Adam Butler; Juok Cho; Gillian L. Dalgliesh; Danushka Galappaththige; Christopher Greenman; Claire Hardy; Mingming Jia; Calli Latimer; King Wai Lau; John Marshall; Stuart McLaren; Andrew Menzies; Laura Mudie; Lucy Stebbings; David A. Largaespada; Lodewyk F. A. Wessels; Stéphane Richard; Richard J. Kahnoski; John Anema

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Nature | 2010

Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes

Gillian L. Dalgliesh; Kyle A. Furge; Christopher Greenman; Lina Chen; Graham R. Bignell; Adam Butler; Helen Davies; Sarah Edkins; Claire Hardy; Calli Latimer; Jon Teague; Jenny Andrews; Syd Barthorpe; Dave Beare; Gemma Buck; Peter J. Campbell; Simon A. Forbes; Mingming Jia; David Jones; Henry Knott; Chai Yin Kok; King Wai Lau; Catherine Leroy; Meng-Lay Lin; David J. McBride; Mark Maddison; Simon Maguire; Kirsten McLay; Andrew Menzies; Tatiana Mironenko

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification—SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase—as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Nature Genetics | 2012

Exome sequencing of liver fluke-associated cholangiocarcinoma

Choon Kiat Ong; Chutima Subimerb; Chawalit Pairojkul; Sopit Wongkham; Ioana Cutcutache; Willie Yu; John R. McPherson; George E. Allen; Cedric Chuan Young Ng; Bernice Huimin Wong; Swe Swe Myint; Vikneswari Rajasegaran; Hong Lee Heng; Anna Gan; Zhi Jiang Zang; Yingting Wu; Jeanie Wu; Ming Hui Lee; Dachuan Huang; Pauline Ong; Waraporn Chan-on; Yun Cao; Chao Nan Qian; Kiat Hon Lim; Aikseng Ooi; Karl Dykema; Kyle A. Furge; Veerapol Kukongviriyapan; Banchob Sripa; Chaisiri Wongkham

Opisthorchis viverrini–related cholangiocarcinoma (CCA), a fatal bile duct cancer, is a major public health concern in areas endemic for this parasite. We report here whole-exome sequencing of eight O. viverrini–related tumors and matched normal tissue. We identified and validated 206 somatic mutations in 187 genes using Sanger sequencing and selected 15 genes for mutation prevalence screening in an additional 46 individuals with CCA (cases). In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8–3.7% of cases. These included inactivating mutations in MLL3 (in 14.8% of cases), ROBO2 (9.3%), RNF43 (9.3%) and PEG3 (5.6%), and activating mutations in the GNAS oncogene (9.3%). These genes have functions that can be broadly grouped into three biological classes: (i) deactivation of histone modifiers, (ii) activation of G protein signaling and (iii) loss of genome stability. This study provides insight into the mutational landscape contributing to O. viverrini–related CCA.


The American Journal of Surgical Pathology | 2008

Renal translocation carcinomas: clinicopathologic, immunohistochemical, and gene expression profiling analysis of 31 cases with a review of the literature.

Philippe Camparo; Viorel Vasiliu; Vincent Molinié; Jérôme Couturier; Karl Dykema; David Petillo; Kyle A. Furge; Eva Comperat; Marick Laé; Raymonde Bouvier; Liliane Boccon-Gibod; Yves Denoux; Sophie Ferlicot; Eric Forest; Gaëlle Fromont; Marie C. Hintzy; Myriam Laghouati; Mathilde Sibony; Marie L. Tucker; Nina Weber; Bin Tean Teh; Annick Vieillefond

We report clinicopathologic features of a large series of renal translocation carcinomas from a multicentric study. Diagnosis was performed by cytogenetic examination of fresh material and/or by immunochemistry with antibodies directed against the C-terminal part of transcription factor E3 (TFE3) and native transcription factor EB (TFEB) proteins. Clinical data, follow-up, and histologic features were assessed. Antibodies against CK7, CD10, vimentin, epithelial membrane antigen, AE1-AE3, E-cadherin, α-methylacyl-coenzyme A racemase, melan A, and HMB45 were tested on tissue microarrays. Whole-genome microarray expression profiling was performed on 4 tumors. Twenty-nine cases were diagnosed as TFE3 and 2 as TFEB renal translocation carcinomas, including 13 males and 18 females, mean age 24.6 years. Two patients had a previous history of chemotherapy and 1 had a history of renal failure. Mean size of the tumor was 6.9 cm. Thirteen cases were ≥pT3 stage. Twelve cases were N+ or M+. Mean follow-up was 29.5 months. Three patients presented metastases and 5 have died. Mixed papillary and nested patterns with clear and/or eosinophilic cells represented the most consistent histologic appearance, with common foci of calcifications regardless of the type of translocation. Using a 30 mn incubation at room temperature, TFE3 immunostainings were positive in only 82% of our TFE3 translocation carcinomas. Both TFE3 and TFEB renal translocation carcinomas expressed CD10 and α-methylacyl-coenzyme A racemase in all cases. An expression of E-cadherin was observed in two-third of cases. Cytokeratins were expressed in less than one-third of cases. Melanocytic markers were expressed at least weakly in all cases except two. Unsupervised clustering on the basis of the gene expression profiling indicated a distinct subgroup of tumors. TRIM 63 glutathione S-transferase A1 and alanyl aminopeptidase are the main differentially expressed genes for this group of tumors. Our results suggest that these differentially expressed genes may serve as novel diagnostic or prognostic markers.


Molecular Cancer Therapeutics | 2010

Reversible Epithelial to Mesenchymal Transition and Acquired Resistance to Sunitinib in Patients with Renal Cell Carcinoma: Evidence from a Xenograft Study

Hans J. Hammers; Henk M.W. Verheul; Brenda Salumbides; Rajni Sharma; Michelle A. Rudek; Janneke Jaspers; Preeti Shah; Leigh Ellis; Li Shen; Silvia Paesante; Karl Dykema; Kyle A. Furge; Bin Tean Teh; George J. Netto; Roberto Pili

Tyrosine kinase inhibitors (TKI) targeting angiogenesis via inhibition of the vascular endothelial growth factor pathway have changed the medical management of metastatic renal cell carcinoma. Although treatment with TKIs has shown clinical benefit, these drugs will eventually fail patients. The potential mechanisms of resistance to TKIs are poorly understood. To address this question, we obtained an excisional biopsy of a skin metastasis from a patient with clear cell renal carcinoma who initially had a response to sunitinib and eventually progressed with therapy. Tumor pieces were grafted s.c. in athymic nude mice. Established xenografts were treated with sunitinib. Tumor size, microvascular density, and pericyte coverage were determined. Plasma as well as tissue levels for sunitinib were assessed. A tumor-derived cell line was established and assessed in vitro for potential direct antitumor effects of sunitinib. To our surprise, xenografts from the patient who progressed on sunitinib regained sensitivity to the drug. At a dose of 40 mg/kg, sunitinib caused regression of the subcutaneous tumors. Histology showed a marked reduction in microvascular density and pericyte dysfunction. More interestingly, histologic examination of the original skin metastasis revealed evidence of epithelial to mesenchymal transition, whereas the xenografts showed reversion to the clear cell phenotype. In vitro studies showed no inhibitory effect on tumor cell growth at pharmacologically relevant concentrations. In conclusion, the histologic examination in this xenograft study suggests that reversible epithelial to mesenchymal transition may be associated with acquired tumor resistance to TKIs in patients with clear cell renal carcinoma. Mol Cancer Ther; 9(6); 1525–35. ©2010 AACR.


Cancer Research | 2007

Detection of DNA Copy Number Changes and Oncogenic Signaling Abnormalities from Gene Expression Data Reveals MYC Activation in High-Grade Papillary Renal Cell Carcinoma

Kyle A. Furge; Jindong Chen; Julie Koeman; Pamela Swiatek; Karl Dykema; Kseniji Lucin; Richard J. Kahnoski; Ximing J. Yang; Bin Tean Teh

Papillary renal cell carcinoma (RCC) represents 10% to 15% of adult renal neoplasms; however, the molecular genetic events that are associated with the development and progression of sporadic papillary RCC remain largely unclear. Papillary RCCs can be divided into two subtypes based on histologic, cytogenetic, and gene expression differences. Type 1 tumors ( approximately 60-70%) are generally low grade with favorable outcome, whereas type 2 tumors ( approximately 30-40%) are associated with increased cytogenetic complexity, high tumor grade, and poor prognosis. In this study, computational analysis of gene expression data derived from papillary RCC revealed that a transcriptional signature indicative of MYC pathway activation is present in high-grade type 2 papillary RCC. The MYC signature is associated with amplification of chromosome 8q and overexpression of MYC that maps to chromosome 8q24. The importance of MYC activation was confirmed by both pharmacologic and short interfering RNA-mediated inhibition of active Myc signaling in a cell line model of type 2 papillary RCC. These results provide both computational and genetic evidence that activation of Myc is associated with the aggressiveness of papillary type 2 RCC. Therefore, it will be useful to consider inhibition of components of the MYC signaling pathway as avenues for therapeutic intervention in high-grade papillary RCC.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations

Chong Feng Gao; Kyle A. Furge; Julie Koeman; Karl Dykema; Yanli Su; Mary Lou Cutler; Adam Werts; Pete Haak; George F. Vande Woude

Chromosome instability and aneuploidy are hallmarks of cancer, but it is not clear how changes in the chromosomal content of a cell contribute to the malignant phenotype. Previously we have shown that we can readily isolate highly proliferative tumor cells and their revertants from highly invasive tumor cell populations, indicating how phenotypic shifting can contribute to malignant progression. Here we show that chromosome instability and changes in chromosome content occur with phenotypic switching. Further, we show that changes in the copy number of each chromosome quantitatively impose a proportional change in the chromosome transcriptome ratio. This correlation also applies to subchromosomal regions of derivative chromosomes. Importantly, we show that the changes in chromosome content and the transcriptome favor the expression of a large number of genes appropriate for the specific tumor phenotype. We conclude that chromosome instability generates the necessary chromosome diversity in the tumor cell populations and, therefore, the transcriptome diversity to allow for environment-facilitated clonal expansion and clonal evolution of tumor cell populations.


PLOS ONE | 2009

The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development.

Charlotta Lindvall; Cassandra R. Zylstra; Nicole Evans; Richard A. West; Karl Dykema; Kyle A. Furge; Bart O. Williams

Canonical Wnt signals are transduced through a Frizzled receptor and either the LRP5 or LRP6 co-receptor; such signals play central roles during development and in disease. We have previously shown that Lrp5 is required for ductal stem cell activity and that loss of Lrp5 delays normal mammary development and Wnt1-induced tumorigenesis. Here we show that canonical Wnt signals through the Lrp6 co-receptor are also required for normal mouse mammary gland development. Loss of Lrp6 compromises Wnt/β-catenin signaling and interferes with mammary placode, fat pad, and branching development during embryogenesis. Heterozygosity for an inactivating mutation in Lrp6 is associated with a reduced number of terminal end buds and branches during postnatal development. While Lrp6 is expressed in both the basal and luminal mammary epithelium during embryogenesis, Lrp6 expression later becomes restricted to cells residing in the basal epithelial layer. Interestingly, these cells also express mammary stem cell markers. In humans, increased Lrp6 expression is associated with basal-like breast cancer. Taken together, our results suggest both overlapping and specific functions for Lrp5 and Lrp6 in the mammary gland.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer

Carrie R. Graveel; Jack D. DeGroot; Yanli Su; Julie Koeman; Karl Dykema; Samuel Leung; Jacqueline Snider; Sherri R. Davies; Pamela J. Swiatek; Sandra Cottingham; Mark A. Watson; Matthew J. Ellis; Robert E. Sigler; Kyle A. Furge; George F. Vande Woude

Understanding the signaling pathways that drive aggressive breast cancers is critical to the development of effective therapeutics. The oncogene MET is associated with decreased survival in breast cancer, yet the role that MET plays in the various breast cancer subtypes is unclear. We describe a knockin mouse with mutationally activated Met (Metmut) that develops a high incidence of diverse mammary tumors with basal characteristics, including metaplasia, absence of progesterone receptor and ERBB2 expression, and expression of cytokeratin 5. With gene expression and tissue microarray analysis, we show that high MET expression in human breast cancers significantly correlated with estrogen receptor negative/ERBB2 negative tumors and with basal breast cancers. Few treatment options exist for breast cancers of the basal or trastuzumab-resistant ERBB2 subtypes. We conclude from these studies that MET may play a critical role in the development of the most aggressive breast cancers and may be a rational therapeutic target.


Cancer Research | 2013

CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma

Aikseng Ooi; Karl Dykema; Asif Ansari; David Petillo; John Snider; Richard J. Kahnoski; John Anema; David Craig; John D. Carpten; Bin Tean Teh; Kyle A. Furge

Sustained activation of the stress-regulated transcription factor NRF2 (NFE2L2) is a prominent feature of many types of cancer, implying that mutations driving NRF2 may be important to tumor progression. In hereditary type 2 papillary renal cell carcinoma (PRCC2, also known as hereditary leiomyomatosis and renal cell cancer), NRF2 activation is a direct consequence of the accumulation of intracellular fumarate, a result of fumarate hydratase (FH) inactivation, but it is not clear how NRF2 may be activated in sporadic forms of PRCC2. Here we show that somatic mutations in NRF2, CUL3, and SIRT1 are responsible for driving the NRF2 activation phenotype in sporadic PRCC2. Transcriptome sequencing revealed the expression pattern of mutant alleles of NRF2, CUL3, and SIRT1 and also confirmed NRF2 activation in clinical specimens. Our results show a convergence in somatic mutations in sporadic PRCC2 with FH mutation in hereditary PRCC2.

Collaboration


Dive into the Karl Dykema's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Tean Teh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge