Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey P. MacKeigan is active.

Publication


Featured researches published by Jeffrey P. MacKeigan.


Cell | 2009

Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy

Paul Leslie Nicklin; Philip Bergman; Bailin Zhang; Ellen Triantafellow; Henry Wang; Beat Nyfeler; Haidi Yang; Marc Hild; Charles Kung; Christopher J. Wilson; Vic E. Myer; Jeffrey P. MacKeigan; Jeffrey A. Porter; Y. Karen Wang; Lewis C. Cantley; Peter Finan; Leon O. Murphy

Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.


Molecular Cell | 2010

Activation of a metabolic gene regulatory network downstream of mTOR complex 1.

Katrin Düvel; Jessica L. Yecies; Suchithra Menon; Pichai Raman; Alex I. Lipovsky; Amanda Souza; Ellen Triantafellow; Qicheng Ma; Regina Gorski; Stephen Cleaver; Matthew G. Vander Heiden; Jeffrey P. MacKeigan; Peter Finan; Clary B. Clish; Leon O. Murphy; Brendan D. Manning

Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1alpha) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease.


Nature Cell Biology | 2005

Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance

Jeffrey P. MacKeigan; Leon O. Murphy; John Blenis

Evasion from apoptosis is a hallmark of cancer, and recent success using targeted therapeutics underscores the importance of identifying anti-apoptotic survival pathways. Here we utilize RNA interference (RNAi) to systematically screen the kinase and phosphatase component of the human genome. In addition to known kinases, we identified several new survival kinases. Interestingly, numerous phosphatases and associated regulatory subunits contribute to cell survival, revealing a previously unrecognized general role for phosphatases as negative regulators of apoptosis. We also identified a subset of phosphatases with tumour-suppressor-like activity. Finally, RNAi targeting of specific protein kinases sensitizes resistant cells to chemotherapeutic agents. The development of inhibitors that target these kinases or phosphatases may lead to new anti-cancer strategies.


Molecular and Cellular Biology | 2004

A Network of Immediate Early Gene Products Propagates Subtle Differences in Mitogen-Activated Protein Kinase Signal Amplitude and Duration

Leon O. Murphy; Jeffrey P. MacKeigan; John Blenis

ABSTRACT The strength and duration of mitogen-activated protein kinase (MAPK) signaling have been shown to regulate cell fate in different cell types. In this study, a general mechanism is described that explains how subtle differences in signaling kinetics are translated into a specific biological outcome. In fibroblasts, the expression of immediate early gene (IEG)-encoded Fos, Jun, Myc, and early growth response gene 1 (Egr-1) transcription factors is significantly extended by sustained extracellular signal-regulated kinase 1 and 2 (ERK1 and -2) signaling. Several of these proteins contain functional docking site for ERK, FXFP (DEF) domains that serve to locally concentrate the active kinase, thus showing that they can function as ERK sensors. Sustained ERK signaling regulates the posttranslational modifications of these IEG-encoded sensors, which contributes to their sustained expression during the G1-S transition. DEF domain-containing sensors can also interpret the small changes in ERK signal strength that arise from less than a threefold reduction in agonist concentration. As a result, downstream target gene expression and cell cycle progression are significantly changed.


Current Biology | 2005

Spatially Separate Docking Sites on ERK2 Regulate Distinct Signaling Events In Vivo

Christopher A. Dimitri; William E. Dowdle; Jeffrey P. MacKeigan; John Blenis; Leon O. Murphy

Inhibitors of the oncogenic Ras-MAPK pathway have been intensely pursued as therapeutics. Targeting this pathway, however, presents challenges due to the essential role of MAPK in homeostatic functions. The phosphorylation and activation of MAPK substrates is regulated by protein-protein interactions with MAPK docking sites. Active ERK1/2 (extracellular signal-regulated kinase 1/2)-MAPKs localize to effectors containing DEF (docking site for ERK, (F)/(Y) -X-(F)/(Y) -P)- or D-domain (docking domain) motifs. We have examined the in vivo activity of ERK2 mutants with impaired ability to signal via either docking site. Mutations in the DEF-domain binding pocket prevent activation of DEF-domain-containing effectors but not RSK (90 kDa ribosomal S6 kinase), which contains a D domain. Conversely, mutation of the ERK2 CD domain, which interacts with D domains, prevents RSK activation but not DEF-domain signaling. Uncoupling docking interactions does not compromise ERK2 phosphotransferase activity. ERK2 DEF mutants undergo regulated nuclear translocation but are defective for Elk-1/TCF transactivation and target gene induction. Thus, downstream branches of ERK2 signaling can be selectively inhibited without blocking total pathway activity. Significantly, several protooncogenes contain DEF domains and are regulated by ERK1/2. Therefore, disrupting ERK-DEF domain interactions could be an alternative to inhibiting oncogenic Ras-MAPK signaling.


Molecular and Cellular Biology | 2005

Graded Mitogen-Activated Protein Kinase Activity Precedes Switch-Like c-Fos Induction in Mammalian Cells

Jeffrey P. MacKeigan; Leon O. Murphy; Christopher A. Dimitri; John Blenis

ABSTRACT The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to lie downstream of the kinase cascade in mammalian fibroblasts.


Chinese Journal of Cancer | 2011

Mitochondria in cancer: at the crossroads of life and death

Vanessa C. Fogg; Nathan J. Lanning; Jeffrey P. MacKeigan

Mitochondrial processes play an important role in tumor initiation and progression. In this review, we focus on three critical processes by which mitochondrial function may contribute to cancer: through alterations in glucose metabolism, the production of reactive oxygen species (ROS) and compromise of intrinsic apoptotic function. Alterations in cancer glucose metabolism include the Warburg effect, leading to a shift in metabolism away from aerobic respiration toward glycolysis, even when sufficient oxygen is present to support respiration. Such alterations in cellular metabolism may favor tumor cell growth by increasing the availability of biosynthetic intermediates needed for cellular growth and proliferation. Mutations in specific metabolic enzymes, namely succinate dehydrogenase, fumarate hydratase and the isocitrate dehydrogenases, have been linked to human cancer. Mitochondrial ROS may contribute to cancer via DNA damage and the activation of aberrant signaling pathways. ROS-dependent stabilization of the transcription factor hypoxia-inducible factor (HIF) may be a particularly important event for tumorigenesis. Compromised function of intrinsic apoptosis removes an important cellular safeguard against cancer and has been implicated in tumorigenesis, tumor metastasis, and chemoresistance. Each of the major mitochondrial processes is linked. In this review, we outline the connections between them and address ways these mitochondrial pathways may be targeted for cancer therapy.


PLOS ONE | 2012

STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma.

Brendan D. Looyenga; Danielle Hutchings; Irene Cherni; Chris Kingsley; Glen J. Weiss; Jeffrey P. MacKeigan

Constitutive activation of STAT3 is a common feature in many solid tumors including non-small cell lung carcinoma (NSCLC). While activation of STAT3 is commonly achieved by somatic mutations to JAK2 in hematologic malignancies, similar mutations are not often found in solid tumors. Previous work has instead suggested that STAT3 activation in solid tumors is more commonly induced by hyperactive growth factor receptors or autocrine cytokine signaling. The interplay between STAT3 activation and other well-characterized oncogenic “driver” mutations in NSCLC has not been fully characterized, though constitutive STAT3 activation has been proposed to play an important role in resistance to various small-molecule therapies that target these oncogenes. In this study we demonstrate that STAT3 is constitutively activated in human NSCLC samples and in a variety of NSCLC lines independent of activating KRAS or tyrosine kinase mutations. We further show that genetic or pharmacologic inhibition of the gp130/JAK2 signaling pathway disrupts activation of STAT3. Interestingly, treatment of NSCLC cells with the JAK1/2 inhibitor ruxolitinib has no effect on cell proliferation and viability in two-dimensional culture, but inhibits growth in soft agar and xenograft assays. These data demonstrate that JAK2/STAT3 signaling operates independent of known driver mutations in NSCLC and plays critical roles in tumor cell behavior that may not be effectively inhibited by drugs that selectively target these driver mutations.


BMC Medical Genomics | 2010

Birt-Hogg-Dubé renal tumors are genetically distinct from other renal neoplasias and are associated with up-regulation of mitochondrial gene expression

Jeff A Klomp; David Petillo; Natalie M. Niemi; Karl Dykema; Jindong Chen; Ximing J. Yang; Annika Sääf; Peter Zickert; Markus Aly; Ulf S.R. Bergerheim; Magnus Nordenskjöld; Sophie Gad; Sophie Giraud; Yves Denoux; Laurent Yonneau; Arnaud Mejean; Viorel Vasiliu; Stéphane Richard; Jeffrey P. MacKeigan; Bin Tean Teh; Kyle A. Furge

BackgroundGermline mutations in the folliculin (FLCN) gene are associated with the development of Birt-Hogg-Dubé syndrome (BHDS), a disease characterized by papular skin lesions, a high occurrence of spontaneous pneumothorax, and the development of renal neoplasias. The majority of renal tumors that arise in BHDS-affected individuals are histologically similar to sporadic chromophobe renal cell carcinoma (RCC) and sporadic renal oncocytoma. However, most sporadic tumors lack FLCN mutations and the extent to which the BHDS-derived renal tumors share genetic defects associated with the sporadic tumors has not been well studied.MethodsBHDS individuals were identified symptomatically and FLCN mutations were confirmed by DNA sequencing. Comparative gene expression profiling analyses were carried out on renal tumors isolated from individuals afflicted with BHDS and a panel of sporadic renal tumors of different subtypes using discriminate and clustering approaches. qRT-PCR was used to confirm selected results of the gene expression analyses. We further analyzed differentially expressed genes using gene set enrichment analysis and pathway analysis approaches. Pathway analysis results were confirmed by generation of independent pathway signatures and application to additional datasets.ResultsRenal tumors isolated from individuals with BHDS showed distinct gene expression and cytogenetic characteristics from sporadic renal oncocytoma and chromophobe RCC. The most prominent molecular feature of BHDS-derived kidney tumors was high expression of mitochondria-and oxidative phosphorylation (OXPHOS)-associated genes. This mitochondria expression phenotype was associated with deregulation of the PGC-1α-TFAM signaling axis. Loss of FLCN expression across various tumor types is also associated with increased nuclear mitochondrial gene expression.ConclusionsOur results support a genetic distinction between BHDS-associated tumors and other renal neoplasias. In addition, deregulation of the PGC-1α-TFAM signaling axis is most pronounced in renal tumors that harbor FLCN mutations and in tumors from other organs that have relatively low expression of FLCN. These results are consistent with the recently discovered interaction between FLCN and AMPK and support a model in which FLCN is a regulator of mitochondrial function.


Journal of Biological Chemistry | 2010

Identification of SRC3/AIB1 as a Preferred Coactivator for Hormone-activated Androgen Receptor

X. Edward Zhou; Kelly Suino-Powell; Jun Li; Yuanzheng He; Jeffrey P. MacKeigan; Karsten Melcher; Eu Leong Yong; H. Eric Xu

Transcription activation by androgen receptor (AR), which depends on recruitment of coactivators, is required for the initiation and progression of prostate cancer, yet the mechanisms of how hormone-activated AR interacts with coactivators remain unclear. This is because AR, unlike any other nuclear receptor, prefers its own N-terminal FXXLF motif to the canonical LXXLL motifs of coactivators. Through biochemical and crystallographic studies, we identify that steroid receptor coactivator-3 (SRC3) (also named as amplified in breast cancer-1 or AIB1) interacts strongly with AR via synergistic binding of its first and third LXXLL motifs. Mutagenesis and functional studies confirm that SRC3 is a preferred coactivator for hormone-activated AR. Importantly, AR mutations found in prostate cancer patients correlate with their binding potency to SRC3, corroborating with the emerging role of SRC3 as a prostate cancer oncogene. These results provide a molecular mechanism for the selective utilization of SRC3 by hormone-activated AR, and they link the functional relationship between AR and SRC3 to the development and growth of prostate cancer.

Collaboration


Dive into the Jeffrey P. MacKeigan's collaboration.

Top Co-Authors

Avatar

Katie R. Martin

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge