Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl F. Herold is active.

Publication


Featured researches published by Karl F. Herold.


ACS Chemical Biology | 2014

Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

Helgi I. Ingólfsson; Pratima Thakur; Karl F. Herold; E. Ashley Hobart; Nicole Ramsey; Xavier Periole; Djurre H. de Jong; Martijn Zwama; Duygu Yilmaz; Katherine Hall; Thorsten Maretzky; Hugh C. Hemmings; Carl P. Blobel; Siewert J. Marrink; Armagan Kocer; Jon T. Sack; Olaf S. Andersen

A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.


Anesthesiology | 2009

Comparative Effects of Halogenated Inhaled Anesthetics on Voltage-gated Na+Channel Function

Wei Ouyang; Karl F. Herold; Hugh C. Hemmings

Background:Inhibition of voltage-gated Na+ channels (Nav) is implicated in the synaptic actions of volatile anesthetics. We studied the effects of the major halogenated inhaled anesthetics (halothane, isoflurane, sevoflurane, enflurane, and desflurane) on Nav1.4, a well-characterized pharmacological model for Nav effects. Methods:Na+ currents (INa) from rat Nav1.4 &agr;-subunits heterologously expressed in Chinese hamster ovary cells were analyzed by whole cell voltage-clamp electrophysiological recording. Results:Halogenated inhaled anesthetics reversibly inhibited Nav1.4 in a concentration- and voltage-dependent manner at clinical concentrations. At equianesthetic concentrations, peak INa was inhibited with a rank order of desflurane > halothane ≈ enflurane > isoflurane ≈ sevoflurane from a physiologic holding potential (–80 mV). This suggests that the contribution of Na+ channel block to anesthesia might vary in an agent-specific manner. From a hyperpolarized holding potential that minimizes inactivation (–120 mV), peak INa was inhibited with a rank order of potency for tonic inhibition of peak INa of halothane > isoflurane ≈ sevoflurane > enflurane > desflurane. Desflurane produced the largest negative shift in voltage-dependence of fast inactivation consistent with its more prominent voltage-dependent effects. A comparison between isoflurane and halothane showed that halothane produced greater facilitation of current decay, slowing of recovery from fast inactivation, and use-dependent block than isoflurane. Conclusions:Five halogenated inhaled anesthetics all inhibit a voltage-gated Na+ channel by voltage- and use-dependent mechanisms. Agent-specific differences in efficacy for Na+ channel inhibition due to differential state-dependent mechanisms creates pharmacologic diversity that could underlie subtle differences in anesthetic and nonanesthetic actions.


Frontiers in Pharmacology | 2012

Sodium channels as targets for volatile anesthetics.

Karl F. Herold; Hugh C. Hemmings

The molecular mechanisms of modern inhaled anesthetics are still poorly understood although they are widely used in clinical settings. Considerable evidence supports effects on membrane proteins including ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetic effects on central nervous system depression. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic end points: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics at high concentrations. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions at clinical concentrations. Volatile anesthetics reduce peak Na+ current (INa) and shift the voltage of half-maximal steady-state inactivation (h∞) toward more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed, together with enhanced use-dependent block during pulse train protocols. These effects can depress presynaptic excitability, depolarization and Ca2+ entry, and ultimately reduce transmitter release. This reduction in transmitter release is more potent for glutamatergic compared to GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of their effects.


Anesthesiology | 2009

Isoflurane Inhibits the Tetrodotoxin-resistant Voltage-gated Sodium Channel Nav1.8

Karl F. Herold; Carla Nau; Wei Ouyang; Hugh C. Hemmings

Background:Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant (TTX-r) compared to other isoforms. Nav1.8 is highly expressed in dorsal root ganglion neurons and is functionally linked to nociception, but the sensitivity of TTX-r isoforms to inhaled anesthetics is unclear. Methods:The sensitivities of heterologously expressed rat TTX-r Nav1.8 and endogenous tetrodotoxin-sensitive (TTX-s) Nav to the prototypic inhaled anesthetic isoflurane were tested in mammalian ND7/23 cells using patch-clamp electrophysiology. Results:From a holding potential of −70 mV, isoflurane (0.53 ± 0.06 mm, 1.8 minimum alveolar concentration at 24°C) reduced normalized peak Na+ current (INa) of Nav1.8 to 0.55 ± 0.03 and of endogenous TTX-s Nav to 0.56 ± 0.06. Isoflurane minimally inhibited INa from a holding potential of −140 mV. Isoflurane did not affect voltage-dependence of activation, but it significantly shifted voltage-dependence of steady-state inactivation by −6 mV for Nav1.8 and by −7 mV for TTX-s Nav. IC50 values for inhibition of peak INa were 0.67 ± 0.06 mm for Nav1.8 and 0.66 ± 0.09 mm for TTX-s Nav; significant inhibition occurred at clinically relevant concentrations as low as 0.58 minimum alveolar concentration. Isoflurane produced use-dependent block of Nav1.8; at a stimulation frequency of 10 Hz, 0.56 ± 0.08 mm isoflurane reduced INa to 0.64 ± 0.01 versus 0.78 ± 0.01 for control. Conclusion:Isoflurane inhibited the tetrodotoxin-resistant isoform Nav1.8 with potency comparable to that for endogenous tetrodotoxin-sensitive Nav isoforms, indicating that sensitivity to inhaled anesthetics is conserved across diverse Nav family members. Block of Nav1.8 in dorsal root ganglion neurons could contribute to the effects of inhaled anesthetics on peripheral nociceptive mechanisms.


The Journal of General Physiology | 2011

Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: implications for drug discovery.

Radda Rusinova; Karl F. Herold; R. Lea Sanford; Denise V. Greathouse; Hugh C. Hemmings; Olaf S. Andersen

The thiazolidinediones (TZDs) are used in the treatment of diabetes mellitus type 2. Their canonical effects are mediated by activation of the peroxisome proliferator–activated receptor γ (PPARγ) transcription factor. In addition to effects mediated by gene activation, the TZDs cause acute, transcription-independent changes in various membrane transport processes, including glucose transport, and they alter the function of a diverse group of membrane proteins, including ion channels. The basis for these off-target effects is unknown, but the TZDs are hydrophobic/amphiphilic and adsorb to the bilayer–water interface, which will alter bilayer properties, meaning that the TZDs may alter membrane protein function by bilayer-mediated mechanisms. We therefore explored whether the TZDs alter lipid bilayer properties sufficiently to be sensed by bilayer-spanning proteins, using gramicidin A (gA) channels as probes. The TZDs altered bilayer elastic properties with potencies that did not correlate with their affinity for PPARγ. At concentrations where they altered gA channel function, they also altered the function of voltage-dependent sodium channels, producing a prepulse-dependent current inhibition and hyperpolarizing shift in the steady-state inactivation curve. The shifts in the inactivation curve produced by the TZDs and other amphiphiles can be superimposed by plotting them as a function of the changes in gA channel lifetimes. The TZDs’ partition coefficients into lipid bilayers were measured using isothermal titration calorimetry. The most potent bilayer modifier, troglitazone, alters bilayer properties at clinically relevant free concentrations; the least potent bilayer modifiers, pioglitazone and rosiglitazone, do not. Unlike other TZDs tested, ciglitazone behaves like a hydrophobic anion and alters the gA monomer–dimer equilibrium by more than one mechanism. Our results provide a possible mechanism for some off-target effects of an important group of drugs, and underscore the importance of exploring bilayer effects of candidate drugs early in drug development.


The Journal of General Physiology | 2014

Volatile anesthetics inhibit sodium channels without altering bulk lipid bilayer properties

Karl F. Herold; R. Lea Sanford; William Lee; Margaret F. Schultz; Helgi I. Ingólfsson; Olaf S. Andersen; Hugh C. Hemmings

Volatile anesthetics act directly on neuronal sodium channels, independently of effects on the lipid bilayer.


PLOS ONE | 2014

Isoflurane Reversibly Destabilizes Hippocampal Dendritic Spines by an Actin-Dependent Mechanism

Jimcy Platholi; Karl F. Herold; Hugh C. Hemmings; Shelley Halpain

General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties

Karl F. Herold; R. Lea Sanford; William Lee; Olaf S. Andersen; Hugh C. Hemmings

Significance General anesthetics are essential to modern medicine, yet their molecular mechanisms remain poorly understood. Whether general anesthetics primarily act by altering lipid bilayer properties or by interacting directly with specific membrane proteins is a longstanding controversy. We now show that diverse classes of general anesthetics do not alter bilayer properties at concentrations that induce clinical anesthesia. Although anesthetics can have bilayer-perturbing effects at supratherapeutic (toxic) concentrations, this has little pharmacological relevance. Our findings exclude indirect ion channel effects due to perturbations of lipid bilayer properties, supporting the notion that general anesthetics interact directly with therapeutically relevant membrane protein targets. General anesthetics have revolutionized medicine by facilitating invasive procedures, and have thus become essential drugs. However, detailed understanding of their molecular mechanisms remains elusive. A mechanism proposed over a century ago involving unspecified interactions with the lipid bilayer known as the unitary lipid-based hypothesis of anesthetic action, has been challenged by evidence for direct anesthetic interactions with a range of proteins, including transmembrane ion channels. Anesthetic concentrations in the membrane are high (10–100 mM), however, and there is no experimental evidence ruling out a role for the lipid bilayer in their ion channel effects. A recent hypothesis proposes that anesthetic-induced changes in ion channel function result from changes in bilayer lateral pressure that arise from partitioning of anesthetics into the bilayer. We examined the effects of a broad range of chemically diverse general anesthetics and related nonanesthetics on lipid bilayer properties using an established fluorescence assay that senses drug-induced changes in lipid bilayer properties. None of the compounds tested altered bilayer properties sufficiently to produce meaningful changes in ion channel function at clinically relevant concentrations. Even supra-anesthetic concentrations caused minimal bilayer effects, although much higher (toxic) concentrations of certain anesthetic agents did alter lipid bilayer properties. We conclude that general anesthetics have minimal effects on bilayer properties at clinically relevant concentrations, indicating that anesthetic effects on ion channel function are not bilayer-mediated but rather involve direct protein interactions.


BJA: British Journal of Anaesthesia | 2015

Activity-dependent depression of neuronal sodium channels by the general anaesthetic isoflurane

Kerry Purtell; Kevin J. Gingrich; Wei Ouyang; Karl F. Herold; Hugh C. Hemmings

BACKGROUND The mechanisms by which volatile anaesthetics such as isoflurane alter neuronal function are poorly understood, in particular their presynaptic mechanisms. Presynaptic voltage-gated sodium channels (Na(v)) have been implicated as a target for anaesthetic inhibition of neurotransmitter release. We hypothesize that state-dependent interactions of isoflurane with Na(v) lead to increased inhibition of Na(+) current (I(Na)) during periods of high-frequency neuronal activity. METHODS The electrophysiological effects of isoflurane, at concentrations equivalent to those used clinically, were measured on recombinant brain-type Na(v)1.2 expressed in ND7/23 neuroblastoma cells and on endogenous Na(v) in isolated rat neurohypophysial nerve terminals. Rate constants determined from experiments on the recombinant channel were used in a simple model of Na(v) gating. RESULTS At resting membrane potentials, isoflurane depressed peak I(Na) and shifted steady-state inactivation in a hyperpolarizing direction. After membrane depolarization, isoflurane accelerated entry (τ(control)=0.36 [0.03] ms compared with τ(isoflurane)=0.33 [0.05] ms, P<0.05) and slowed recovery (τ(control)=6.9 [1.1] ms compared with τ(isoflurane)=9.0 [1.9] ms, P<0.005) from apparent fast inactivation, resulting in enhanced depression of I(Na), during high-frequency stimulation of both recombinant and endogenous nerve terminal Na(v). A simple model of Na(v) gating involving stabilisation of fast inactivation, accounts for this novel form of activity-dependent block. CONCLUSIONS Isoflurane stabilises the fast-inactivated state of neuronal Na(v) leading to greater depression of I(Na) during high-frequency stimulation, consistent with enhanced inhibition of fast firing neurones.


The Journal of General Physiology | 2017

Isoflurane modulates activation and inactivation gating of the prokaryotic Na+ channel NaChBac

Rheanna Sand; Kevin J. Gingrich; Tamar Macharadze; Karl F. Herold; Hugh C. Hemmings

Voltage-gated Na+ channels (Nav) have emerged as important presynaptic targets for volatile anesthetic (VA) effects on synaptic transmission. However, the detailed biophysical mechanisms by which VAs modulate Nav function remain unclear. VAs alter macroscopic activation and inactivation of the prokaryotic Na+ channel, NaChBac, which provides a useful structural and functional model of mammalian Nav. Here, we study the effects of the common general anesthetic isoflurane on NaChBac function by analyzing macroscopic Na+ currents (INa) in wild-type (WT) channels and mutants with impaired (G229A) or enhanced (G219A) inactivation. We use a previously described six-state Markov model to analyze empirical WT and mutant NaChBac channel gating data. The model reproduces the mean empirical gating manifest in INa time courses and optimally estimates microscopic rate constants, valences (z), and fractional electrical distances (x) of forward and backward transitions. The model also reproduces gating observed for all three channels in the absence or presence of isoflurane, providing further validation. We show using this model that isoflurane increases forward activation and inactivation rate constants at 0 mV, which are associated with estimated chemical free energy changes of approximately −0.2 and −0.7 kcal/mol, respectively. Activation is voltage dependent (z ≈ 2e0, x ≈ 0.3), inactivation shows little voltage dependence, and isoflurane has no significant effect on either. Forward inactivation rate constants are more than 20-fold greater than backward rate constants in the absence or presence of isoflurane. These results indicate that isoflurane modulates NaChBac gating primarily by increasing forward activation and inactivation rate constants. These findings support accumulating evidence for multiple sites of anesthetic interaction with the channel.

Collaboration


Dive into the Karl F. Herold's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl P. Blobel

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon T. Sack

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge