Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl Johan Tronstad is active.

Publication


Featured researches published by Karl Johan Tronstad.


Pharmacogenomics Journal | 2005

Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action?

Johan Fernø; Maria B. Ræder; Audun Osland Vik-Mo; Silje Skrede; Glambek M; Karl Johan Tronstad; Harald Breilid; Roger Løvlie; Rolf K. Berge; Christine Stansberg; Vidar M. Steen

Several studies have reported on structural abnormalities, decreased myelination and oligodendrocyte dysfunction in post-mortem brains from schizophrenic patients. Glia-derived cholesterol is essential for both myelination and synaptogenesis in the CNS. Lipogenesis and myelin synthesis are thus interesting etiological candidate targets in schizophrenia. Using a microarray approach, we here demonstrate that the antipsychotic drugs clozapine and haloperidol upregulate several genes involved in cholesterol and fatty acid biosynthesis in cultured human glioma cells, including HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase), HMGCS1 (3-hydroxy-3-methylglutaryl-coenzyme A synthase-1), FASN (fatty acid synthase) and SCD (stearoyl-CoA desaturase). The changes in gene expression were followed by enhanced HMGCR-enzyme activity and elevated cellular levels of cholesterol and triglycerides. The upregulated genes are all known to be controlled by the sterol regulatory element-binding protein (SREBP) transcription factors. We show that clozapine and haloperidol both activate the SREBP system. The antipsychotic-induced SREBP-mediated increase in glial cell lipogenesis could represent a novel mechanism of action, and may also be relevant for the metabolic side effects of antipsychotics.


Acta Neuropathologica | 2011

Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma

Agnete Svendsen; Joost J.C. Verhoeff; Heike Immervoll; Jan Brogger; Justyna Kmiecik; Aurélie Poli; Inger Anne Netland; Lars Prestegarden; Jesús Planagumà; Anja Torsvik; Anneli Bohne Kjersem; Per Øystein Sakariassen; Jan Ingemann Heggdal; Wouter R. van Furth; Rolf Bjerkvig; Morten Lund-Johansen; Per Øyvind Enger; Joerg Felsberg; Nicolaas H. C. Brons; Karl Johan Tronstad; Andreas Waha; Martha Chekenya

Glioblastoma (GBM) is a highly aggressive brain tumour, where patients respond poorly to radiotherapy and exhibit dismal survival outcomes. The mechanisms of radioresistance are not completely understood. However, cancer cells with an immature stem-like phenotype are hypothesised to play a role in radioresistance. Since the progenitor marker neuron-glial-2 (NG2) has been shown to regulate several aspects of GBM progression in experimental systems, we hypothesised that its expression would influence the survival of GBM patients. Quantification of NG2 expression in 74 GBM biopsies from newly diagnosed and untreated patients revealed that 50% express high NG2 levels on tumour cells and associated vessels, being associated with significantly shorter survival. This effect was independent of age at diagnosis, treatment received and hypermethylation of the O6-methylguanine methyltransferase (MGMT) DNA repair gene promoter. NG2 was frequently co-expressed with nestin and vimentin but rarely with CD133 and the NG2 positive tumour cells harboured genetic aberrations typical for GBM. 2D proteomics of 11 randomly selected biopsies revealed upregulation of an antioxidant, peroxiredoxin-1 (PRDX-1), in the shortest surviving patients. Expression of PRDX-1 was associated with significantly reduced products of oxidative stress. Furthermore, NG2 expressing GBM cells showed resistance to ionising radiation (IR), rapidly recognised DNA damage and effectuated cell cycle checkpoint signalling. PRDX-1 knockdown transiently slowed tumour growth rates and sensitised them to IR in vivo. Our data establish NG2 as an important prognostic factor for GBM patient survival, by mediating resistance to radiotherapy through induction of ROS scavenging enzymes and preferential DNA damage signalling.


Current Opinion in Lipidology | 2002

Metabolic effects of thia fatty acids.

Rolf K. Berge; Jon Skorve; Karl Johan Tronstad; Kjetil Berge; Oddrun Anita Gudbrandsen; Hans J. Grav

Thia substituted fatty acids are saturated fatty acids which are modified by insertion of a sulfur atom at specific positions in the carbon backbone. During the last few years pleiotropic effects of the 3-thia fatty acid tetradecylthioacetic acid have been revealed. The biological responses to tetradecylthioacetic acid include mitochondrial proliferation, increased catabolism of fatty acids, antiadiposity, improvement in insulin sensitivity, antioxidant properties, reduced proliferation and induction of apoptosis in rapidly proliferating cells, cell differentiation and antiinflammatory action. These biological responses indicate that tetradecylthioacetic acid changes the plasma profile from atherogenic to cardioprotective. As a pan-peroxisome proliferator-activated receptor ligand, tetradecylthioacetic acid regulates the adipose tissue mass and the expression of lipid metabolizing enzymes, particularly those involved in catabolic pathways. In contrast, circumstantial evidences suggest that peroxisome proliferator-activated receptor-independent metabolic pathways may be of importance for the antioxidant, antiproliferative and antiinflammatory action of tetradecylthioacetic acid.


PLOS ONE | 2009

Hyperoxic Treatment Induces Mesenchymal-to-Epithelial Transition in a Rat Adenocarcinoma Model

Ingrid Moen; Anne Margrete Øyan; Karl-Henning Kalland; Karl Johan Tronstad; Lars A. Akslen; Martha Chekenya; Per Øystein Sakariassen; Rolf K. Reed; Linda Elin Birkhaug Stuhr

Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimetyl-α-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO2 = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO2 = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (∼16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the “switches” of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects.


The FASEB Journal | 2002

Human TNF-α in transgenic mice induces differential changes in redox status and glutathione-regulating enzymes

Heidi Glosli; Karl Johan Tronstad; Hege Wergedal; Fredrik Müller; Asbjørn Svardal; Pål Aukrust; Rolf K. Berge; Hans Prydz

Tumor necrosis factor α (TNF‐α) is a pleiotropic cytokine involved in several diseases. Various effects of TNF‐α are mediated by the induction of a cellular state consistent with oxidative stress. Glutathione (GSH) is a major redox‐buffer of eukaryotic cells and is important in the defense against oxidative stress. We hypothesized that persistent TNF‐α secretion could induce oxidative stress through modulation of GSH metabolism. This hypothesis was examined in a transgenic mouse model with low, persistent expression of human TNF‐α in the T cell compartment. Major findings were i) marked tissue‐specific changes in GSH redox status and GSH regulating enzymes, with the most pronounced changes in liver; ii) moderate changes in GSH metabolism and up‐regulation of GSH‐regulating enzymes were observed in lung and kidney from transgenic mice; and iii) liver, lung and kidney from transgenic mice had decreased levels of total glutathione, whereas splenic CD4+ and CD8+ T cells had a marked increase in oxidized glutathione as the major change.


Expert Opinion on Therapeutic Targets | 2006

Protein lysine acetylation in normal and leukaemic haematopoiesis: HDACs as possible therapeutic targets in adult AML.

Øystein Bruserud; Camilla Stapnes; Karl Johan Tronstad; Anita Ryningen; Nina Ånensen; Bjørn Tore Gjertsen

Several new therapeutic strategies are now considered for acute myelogenous leukaemia (AML), including modulation of protein lysine acetylation through inhibition of histone deacetylases (HDACs): a large group of enzymes that alters the acetylation and, thereby, the function of a wide range of nuclear and cytoplasmic proteins. Firstly, HDACs can deacetylate histones as well as transcription factors, and can modulate gene expression through both these mechanisms. Secondly, acetylation is an important post-translational modulation of several proteins involved in the regulation of cell proliferation, differentiation and apoptosis (e.g., p53, tubulin, heat-shock protein 90). The only HDAC inhibitors that have been investigated in clinical studies of AML are butyrate derivatives, valproic acid and depsipeptide. In the first studies, the drugs have usually been used as continuous therapy for several weeks or months, and in most studies the drugs were used alone or in combination with all-trans retinoic acid for treatment of patients with relapsed or primary resistant AML. Neurological toxicity and gastrointestinal side effects seem to be common for all three drugs. Complete haematological remission lasting for several months has been reported for a few patients (< 5% of included patients), whereas increased peripheral blood platelet counts seem more common and have been described both for patients with AML and myelodysplastic syndromes. Taken together, these studies suggest that HDAC inhibition can mediate antileukaemic effects in AML, but for most patients the clinical benefit seems limited and further studies of combination therapy are required.


BMC Cancer | 2009

Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma.

Ingrid Moen; Karl Johan Tronstad; Odd Kolmannskog; Gerd Salvesen; Rolf K. Reed; Linda Elin Birkhaug Stuhr

BackgroundHypoxia is associated with increased resistance to chemo- and radiation-therapy. Hyperoxic treatment (hyperbaric oxygen) has previously been shown to potentiate the effect of some forms of chemotherapy, and this has been ascribed to enhanced cytotoxicity or neovascularisation. The aim of this study was to elucidate whether hyperoxia also enhances any actual uptake of 5FU (5-fluorouracil) into the tumor tissue and if this can be explained by changes in the interstitium and extracellular matrix.MethodsOne group of tumor bearing rats was exposed to repeated hyperbaric oxygen (HBO) treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min), whereas one group was exposed to one single identical HBO treatment. Animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar) served as controls. Three doses of 5FU were tested for dose response. Uptake of [3H]-5FU in the tumor was assessed, with special reference to factors that might have contributed, such as interstitial fluid pressure (Pif), collagen content, oxygen stress (measured as malondialdehyd levels), lymphatics and transcapillary transport in the tumors.ResultsThe uptake of the cytostatic agent increases immediately after a single HBO treatment (more than 50%), but not 24 hours after the last repeated HBO treatment. Thus, the uptake is most likely related to the transient increase in oxygenation in the tumor tissue. Factors like tumor Pif and collagen content, which decreased significantly in the tumor interstitium after repeated HBO treatment, was without effect on the drug uptake.ConclusionWe showed that hyperoxia increases the uptake of [3H]-5FU in DMBA-induced mammary tumors per se, independently of changes in Pif, oxygen stress, collagen fibril density, or transendothelial transport alone. The mechanism by which such an uptake occur is still not elucidated, but it is clearly stimulated by elevated pO2.


Journal of Lipid Research | 2003

Impact of mitochondrial β-oxidation in fatty acid-mediated inhibition of glioma cell proliferation

Kjetil Berge; Karl Johan Tronstad; Pavol Bohov; Lise Madsen; Rolf K. Berge

Tetradecylthioacetic acid (TTA), which cannot be β-oxidized, exerts growth-limiting properties in glioma cells. In order to investigate the importance of modulated lipid metabolism and alterations in mitochondrial properties in this cell death process, we incubated glioma cells both with TTA and the oxidizable fatty acid palmitic acid (PA), in the presence of l-carnitine and the carnitine palmitoyltransferase inhibitors etomoxir and aminocarnitine. l-carnitine partly abolished the PA-mediated growth reduction of glioma cells, whereas etomoxir and aminocarnitine enhanced the antiproliferative effect of PA. The production of acid-soluble products increased and the incorporation of PA into glycerolipids decreased after l-carnitine supplementation. l-carnitine was found to enhance the antiproliferative effect of TTA, but did not affect the incorporation of TTA into glycerolipids, or ceramide. PDMP, sphingosine 1-phosphate, desipramine, fumonisin B1, and l-cycloserine were able not to rescue the glioma cells from PA and TTA-induced growth inhibition, suggesting that increased ceramide production is not important in the growth reduction. TTA-mediated growth inhibition was accompanied with an increased uptake of PA and increased incorporation of PA into triacylglycerol (TG). Our data suggest that mitochondrial functions are involved in fatty acid-mediated growth inhibition. Whether there is a causal relationship between TG accumulation and the apoptotic process remains to be determined.


Molecular Cancer | 2009

Camptothecin and khat (Catha edulis Forsk.) induced distinct cell death phenotypes involving modulation of c-FLIPL, Mcl-1, procaspase-8 and mitochondrial function in acute myeloid leukemia cell lines

Therese Bredholt; Elizabeth Dimba; Hanne R. Hagland; Line Wergeland; Jørn Skavland; Kjell Ove Fossan; Karl Johan Tronstad; Anne Christine Johannessen; Olav Karsten Vintermyr; Bjørn Tore Gjertsen

BackgroundAn organic extract of the recreational herb khat (Catha edulis Forsk.) triggers cell death in various leukemia cell lines in vitro. The chemotherapeutics camptothecin, a plant alkaloid topoisomerase I inhibitor, was tested side-by-side with khat in a panel of acute myeloid leukemia cell lines to elucidate mechanisms of toxicity.ResultsKhat had a profound effect on MOLM-13 cells inducing mitochondrial damage, chromatin margination and morphological features of autophagy. The effects of khat on mitochondrial ultrastructure in MOLM-13 correlated with strongly impaired routine respiration, an effect neither found in the khat-resistant MV-4-11 cells nor in camptothecin treated cells. Enforced expression of anti-apoptotic Bcl-2 protein provided protection against camptothecin-induced cell death and partly against khat toxicity. Khat-induced cell death in MOLM-13 cells included reduced levels of anti-apoptotic Mcl-1 protein, while both khat and camptothecin induced c-FLIPL cleavage and procaspase-8 activation.ConclusionKhat activated a distinct cell death pathway in sensitive leukemic cells as compared to camptothecin, involving mitochondrial damage and morphological features of autophagy. This suggests that khat should be further explored in the search for novel experimental therapeutics.


JCI insight | 2016

Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome

Øystein Fluge; Olav Mella; Ove Bruland; Kristin Risa; Sissel E. Dyrstad; Kine Alme; Ingrid Gurvin Rekeland; Dipak Sapkota; Gro Vatne Røsland; Alexander Fosså; Irini Ktoridou-Valen; Sigrid Lunde; Kari Sørland; Katarina Lien; Ingrid Herder; Hanne Thürmer; Merete E. Gotaas; Katarzyna A. Baranowska; Louis M.L.J. Bohnen; Christoph Schäfer; Adrian McCann; Kristian Sommerfelt; Lars Helgeland; Per Magne Ueland; Olav Dahl; Karl Johan Tronstad

Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion.

Collaboration


Dive into the Karl Johan Tronstad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Øystein Bruserud

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge