Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kjetil Berge is active.

Publication


Featured researches published by Kjetil Berge.


Lipids | 1999

Eicosapentaenoic and Docosahexaenoic Acid Affect Mitochondrial and Peroxisomal Fatty Acid Oxidation in Relation to Substrate Preference

Lise Madsen; Arild C. Rustan; Hege Vaagenes; Kjetil Berge; Endre Dyrøy; Rolf K. Berge

Decreased triacylglycerol synthesis within hepatocytes due to decreased diacylglycerol acyltransferase (DGAT) activity has been suggested to be an important mechanism by which diets rich in fish oil lower plasma triacylglycerol levels. New findings suggest that eicosapentaenoic acid (EPA), and not docosahexaenoic acid (DHA), lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation and decreased availability of fatty acids for triacylglycerol synthesis. To contribute to the understanding of the triacylglycerol-lowering mechanism of fish oil, the different metabolic properties of EPA and DHA were studied in rat liver parenchymal cells and isolated rat liver organelles. EPA-CoA was a poorer substrate than DHA-CoA for DGAT in isolated rat liver microsomes, and in the presence of EPA, a markedly lower value for the triacyl[3H]glycerol/diacyl[3H]glycerol ratio was observed. The distribution of [1-14C]palmitic acid was shifted from incorporation into secreted glycerolipids toward oxidation in the presence of EPA (but not DHA) in rat liver parenchymal cells. [1-14C]EPA was oxidized to a much greater extent than [1-14C]DHA in rat liver parenchymal cells, isolated peroxisomes, and especially in purified mitochondria. As the oxidation of EPA was more effective and sensitive to the CPT-I inhibitor, etomoxir, when measured in a combination of both mitochondria and peroxisomes, we hypothesized that both are involved in EPA oxidation, whereas DHA mainly is oxidized in peroxisomes. In rats, EPA treatment lowered plasma triacylglycerol and increased hepatic mitochondrial fatty acid oxidation and carnitine palmitoyltransferase (CPT)-I activity in both the presence and absence of malonyl-CoA. Whereas only EPA treatment increased the mRNA levels of CPT-I, DHA treatment increased the mRNA levels of peroxisomal fatty acyl-CoA oxidase and fatty acid binding protein more effectively than EPA treatment. In conclusion, EPA and DHA affect cellular organelles in relation to their substrate preference. The present study strongly supports the hypothesis that EPA, and not DHA, lowers plasma triacylglycerol by increased mitochondrial fatty acid oxidation.


Nutrition Research | 2009

Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women.

Kevin C. Maki; Mathew S. Reeves; Mildred V. Farmer; Mikko Griinari; Kjetil Berge; Hogne Vik; Rachel Hubacher; Tia M. Rains

Antarctic krill, also known as Euphausia superba, is a marine crustacean rich in both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We tested the hypothesis that krill oil would increase plasma concentrations of EPA and DHA without adversely affecting indicators of safety, tolerability, or selected metabolic parameters. In this randomized, double-blind parallel arm trial, overweight and obese men and women (N = 76) were randomly assigned to receive double-blind capsules containing 2 g/d of krill oil, menhaden oil, or control (olive) oil for 4 weeks. Results showed that plasma EPA and DHA concentrations increased significantly more (P < .001) in the krill oil (178.4 +/- 38.7 and 90.2 +/- 40.3 micromol/L, respectively) and menhaden oil (131.8 +/- 28.0 and 149.9 +/- 30.4 micromol/L, respectively) groups than in the control group (2.9 +/- 13.8 and -1.1 +/- 32.4 micromol/L, respectively). Systolic blood pressure declined significantly more (P < .05) in the menhaden oil (-2.2 +/- 2.0 mm Hg) group than in the control group (3.3 +/- 1.5 mm Hg), and the response in the krill oil group (-0.8 +/- 1.4 mm Hg) did not differ from the other 2 treatments. Blood urea nitrogen declined in the krill oil group as compared with the menhaden oil group (P < .006). No significant differences for other safety variables were noted, including adverse events. In conclusion, 4 weeks of krill oil supplementation increased plasma EPA and DHA and was well tolerated, with no indication of adverse effects on safety parameters.


International Journal of Molecular Sciences | 2012

Marine omega-3 phospholipids: metabolism and biological activities.

Lena Burri; Nils Hoem; Sebastiano Banni; Kjetil Berge

The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs.


Nutrition & Metabolism | 2011

Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice

Fabiana Piscitelli; Gianfranca Carta; Tiziana Bisogno; Elisabetta Murru; Lina Cordeddu; Kjetil Berge; Sally Tandy; Jeffrey S. Cohn; Mikko Griinari; Sebastiano Banni; Vincenzo Di Marzo

BackgroundOmega-3 polyunsaturated fatty acids (ω-3-PUFA) are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids) and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO), on metabolic parameters in high fat diet (HFD)-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT), liver, gastrocnemius muscle, kidneys and heart, of: 1) the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), 2) two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3) the direct biosynthetic precursors of these compounds.MethodsLipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS) or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS).ResultsEight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels.ConclusionsOur data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.


Current Opinion in Lipidology | 2002

Metabolic effects of thia fatty acids.

Rolf K. Berge; Jon Skorve; Karl Johan Tronstad; Kjetil Berge; Oddrun Anita Gudbrandsen; Hans J. Grav

Thia substituted fatty acids are saturated fatty acids which are modified by insertion of a sulfur atom at specific positions in the carbon backbone. During the last few years pleiotropic effects of the 3-thia fatty acid tetradecylthioacetic acid have been revealed. The biological responses to tetradecylthioacetic acid include mitochondrial proliferation, increased catabolism of fatty acids, antiadiposity, improvement in insulin sensitivity, antioxidant properties, reduced proliferation and induction of apoptosis in rapidly proliferating cells, cell differentiation and antiinflammatory action. These biological responses indicate that tetradecylthioacetic acid changes the plasma profile from atherogenic to cardioprotective. As a pan-peroxisome proliferator-activated receptor ligand, tetradecylthioacetic acid regulates the adipose tissue mass and the expression of lipid metabolizing enzymes, particularly those involved in catabolic pathways. In contrast, circumstantial evidences suggest that peroxisome proliferator-activated receptor-independent metabolic pathways may be of importance for the antioxidant, antiproliferative and antiinflammatory action of tetradecylthioacetic acid.


Nutrition & Metabolism | 2011

Krill oil significantly decreases 2-arachidonoylglycerol plasma levels in obese subjects

Sebastiano Banni; Gianfranca Carta; Elisabetta Murru; Lina Cordeddu; Elena Giordano; Anna Rita Sirigu; Kjetil Berge; Hogne Vik; Kevin C Maki; Vincenzo Di Marzo; Mikko Griinari

We have previously shown that krill oil (KO), more efficiently than fish oil, was able to downregulate the endocannabinoid system in different tissues of obese zucker rats.We therefore aimed at investigating whether an intake of 2 g/d of either KO or menhaden oil (MO), which provides 309 mg/d of EPA/DHA 2:1 and 390 mg/d of EPA/DHA 1:1 respectively, or olive oil (OO) for four weeks, is able to modify plasma endocannabinoids in overweight and obese subjects.The results confirmed data in the literature describing increased levels of endocannabinoids in overweight and obese with respect to normo-weight subjects. KO, but not MO or OO, was able to significantly decrease 2-arachidonoylglycerol (2-AG), although only in obese subjects. In addition, the decrease of 2-AG was correlated to the plasma n-6/n-3 phospholipid long chain polyunsaturated fatty acid (LCPUFA) ratio. These data show for the first time in humans that relatively low doses of LCPUFA n-3 as KO can significantly decrease plasma 2-AG levels in obese subjects in relation to decrease of plasma phospholipid n-6/n-3 LCPUFA ratio. This effect is not linked to changes of metabolic syndrome parameters but is most likely due to a decrease of 2-AG biosynthesis caused by the replacement of 2-AG ultimate precursor, arachidonic acid, with n-3 PUFAs, as previously described in obese Zucker rats.


PLOS ONE | 2012

A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats

Alessandra Ferramosca; Annalea Conte; Lena Burri; Kjetil Berge; Francesco De Nuccio; Anna Maria Giudetti; Vincenzo Zara

Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.


Frontiers in Genetics | 2011

Differential effects of krill oil and fish oil on the hepatic transcriptome in mice.

Lena Burri; Kjetil Berge; Karin Wibrand; Rolf K. Berge; Jamie L. Barger

Dietary supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs), specifically the fatty acids docosahexaenoic acid (DHA; 22:6 ω-3) and eicosapentaenoic acid (EPA; 20:5 ω-3), is known to have beneficial health effects including improvements in glucose and lipid homeostasis and modulation of inflammation. To evaluate the efficacy of two different sources of ω-3 PUFAs, we performed gene expression profiling in the liver of mice fed diets supplemented with either fish oil (FO) or krill oil (KO). We found that ω-3 PUFA supplements derived from a phospholipid krill fraction (KO) downregulated the activity of pathways involved in hepatic glucose production as well as lipid and cholesterol synthesis. The data also suggested that KO-supplementation increases the activity of the mitochondrial respiratory chain. Surprisingly, an equimolar dose of EPA and DHA derived from FO modulated fewer pathways than a KO-supplemented diet and did not modulate key metabolic pathways regulated by KO, including glucose metabolism, lipid metabolism and the mitochondrial respiratory chain. Moreover, FO upregulated the cholesterol synthesis pathway, which was the opposite effect of krill-supplementation. Neither diet elicited changes in plasma levels of lipids, glucose, or insulin, probably because the mice used in this study were young and were fed a low-fat diet. Further studies of KO-supplementation using animal models of metabolic disorders and/or diets with a higher level of fat may be required to observe these effects.


Nutrition Research | 2014

Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels

Kjetil Berge; Kathy Musa-Veloso; Melody Harwood; Nils Hoem; Lena Burri

The aim of the study was to explore the effects of 12 weeks daily krill oil supplementation on fasting serum triglyceride (TG) and lipoprotein particle levels in subjects whose habitual fish intake is low and who have borderline high or high fasting serum TG levels (150-499 mg/dL). We hypothesized that Krill oil lowers serum TG levels in subjects with borderline high or high fasting TG levels. To test our hypothesis 300 male and female subjects were included in a double-blind, randomized, multi-center, placebo-controlled study with five treatment groups: placebo (olive oil) or 0.5, 1, 2, or 4 g/day of krill oil. Serum lipids were measured after an overnight fast at baseline, 6 and 12 weeks. Due to a high intra-individual variability in TG levels, data from all subjects in the four krill oil groups were pooled to increase statistical power, and a general time- and dose-independent one-way analysis of variance was performed to assess efficacy. Relative to subjects in the placebo group, those administered krill oil had a statistically significant calculated reduction in serum TG levels of 10.2%. Moreover, LDL-C levels were not increased in the krill oil groups relative to the placebo group. The outcome of the pooled analysis suggests that krill oil is effective in reducing a cardiovascular risk factor. However, owing to the individual fluctuations of TG concentrations measured, a study with more individual measurements per treatment group is needed to increase the confidence of these findings.


Lipids in Health and Disease | 2013

Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men

Kjetil Berge; Fabiana Piscitelli; Nils Hoem; Cristoforo Silvestri; Ingo Meyer; Sebastiano Banni; Vincenzo Di Marzo

We have previously shown that treatment of Zucker rats and mice with diet-induced obesity with dietary docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids in the form of krill oil reduces peripheral levels of endocannabinoids, ectopic fat formation and hyperglycemia. We reported that such treatment reduces plasma endocannabinoid levels also in overweight and obese human individuals, in whom high triglycerides may correlate with high circulating endocannabinoid levels. In this study, we report the effects of krill powder, which contains proteins (34%) in addition to krill oil (61.8%), on these two parameters. We submitted 11 obese men (average BMI of 32.3 kg/m2, age of 42.6 years and plasma triglycerides of 192.5 ± 96.3 mg/dl) to a 24 week dietary supplementation with krill powder (4 g/day per os) and measured anthropometric and metabolic parameters, as well as blood endocannabinoid (anandamide and 2-arachidonoylglycerol) and esterified DHA and EPA levels. Six subjects were included as control subjects and not given any supplements. The treatment produced, after 12 and 24 weeks, a significant increase in DHA and EPA in total plasma, a 59 and 84% decrease in anandamide plasma levels, and a 22.5 and 20.6% decrease in triglyceride levels, respectively. There was also a significant decrease in waist/hip ratio and visceral fat/skeletal muscle mass ratio at 24 weeks, but no change in body weight. These data confirm that dietary krill powder reduces peripheral endocannabinoid overactivity in obese subjects, and might ameliorate some parameters of the metabolic syndrome.

Collaboration


Dive into the Kjetil Berge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hege Wergedahl

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar

Lise Madsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge