Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karl Skorecki is active.

Publication


Featured researches published by Karl Skorecki.


Human Genetics | 2010

Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene

Shay Tzur; Saharon Rosset; Revital Shemer; Guennady Yudkovsky; Sara Selig; Ayele Tarekegn; Endashaw Bekele; Neil Bradman; Walter G. Wasser; Doron M. Behar; Karl Skorecki

MYH9 has been proposed as a major genetic risk locus for a spectrum of nondiabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African-specific missense mutations (S342G and I384M) in the neighboring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. The APOL1 gene product, apolipoprotein L-1, has been studied for its roles in trypanosomal lysis, autophagic cell death, lipid metabolism, as well as vascular and other biological activities. We also show that the distribution of these newly identified APOL1 risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to MYH9.Mapping by admixture linkage disequilibrium (MALD) localized an interval on chromosome 22, in a region that includes the MYH9 gene, which was shown to contain African ancestry risk variants associated with certain forms of ESKD (Kao et al. 2008; Kopp et al. 2008). MYH9 encodes nonmuscle myosin heavy chain IIa, a major cytoskeletal nanomotor protein expressed in many cell types, including podocyte cells of the renal glomerulus. Moreover, 39 different coding region mutations in MYH9 have been identified in patients with a group of rare syndromes, collectively termed the Giant Platelet Syndromes, with clear autosomal dominant inheritance, and various clinical manifestations, sometimes also including glomerular pathology and chronic kidney disease (Kopp 2010; Sekine et al. 2010). Accordingly, MYH9 was further explored in these studies as the leading candidate gene responsible for the MALD signal. Dense mapping of MYH9 identified individual single nucleotide polymorphisms (SNPs) and sets of such SNPs grouped as haplotypes that were found to be highly associated with a large and important group of ESKD risk phenotypes, which as a consequence were designated as MYH9-associated nephropathies (Bostrom and Freedman 2010). These included HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies (Bostrom and Freedman 2010). The MYH9 SNP and haplotype associations observed with these forms of ESKD yielded the largest odds ratios (OR) reported to date for the association of common variants with common disease risk (Winkler et al. 2010). Two specific MYH9 variants (rs5750250 of S-haplotype and rs11912763 of F-haplotype) were designated as most strongly predictive on the basis of Receiver Operating Characteristic analysis (Nelson et al. 2010). These MYH9 association studies were then also extended to earlier stage and related kidney disease phenotypes and to population groups with varying degrees of recent African ancestry admixture (Behar et al. 2010; Freedman et al. 2009a, b; Nelson et al. 2010), and led to the expectation of finding a functional African ancestry causative variant within MYH9. However, despite intensive efforts including re-sequencing of the MYH9 gene no suggested functional mutation has been identified (Nelson et al. 2010; Winkler et al. 2010). This led us to re-examine the interval surrounding MYH9 and to the detection of novel missense mutations with predicted functional effects in the neighboring APOL1 gene, which are significantly more associated with ESKD than all previously reported SNPs in MYH9.


BMC Genetics | 2004

Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans

Mait Metspalu; Toomas Kivisild; Ene Metspalu; Jüri Parik; Georgi Hudjashov; Katrin Kaldma; Piia Serk; Monika Karmin; Doron M. Behar; M. Thomas P. Gilbert; Phillip Endicott; Sarabjit S. Mastana; S.S. Papiha; Karl Skorecki; Antonio Torroni; Richard Villems

BackgroundRecent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia.ResultsFour new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades.ConclusionsSince the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.


Circulation | 1999

Interindividual Heterogeneity in the Hypoxic Regulation of VEGF Significance for the Development of the Coronary Artery Collateral Circulation

Aylit Schultz; Lena Lavie; Irit Hochberg; Rafael Beyar; Tzachi Stone; Karl Skorecki; Peretz Lavie; Ariel Roguin; Andrew P. Levy

BACKGROUND The coronary artery collateral circulation may be beneficial in protecting against myocardial ischemia and necrosis. However, there is a tremendous interindividual variability in the degree of new collateral formation in patients with coronary artery disease. The basis for this interindividual heterogeneity is not understood. In this study we test the hypothesis that failure to generate collateral vessels is associated with a failure to appropriately induce with hypoxia or ischemia the angiogenic factor, vascular endothelial growth factor (VEGF). METHODS AND RESULTS We correlated the VEGF response to hypoxia in the monocytes harvested from patients with coronary artery disease with the presence of collaterals visualized during routine angiography. We found that there was a highly significant difference in the hypoxic induction of VEGF in patients with no collaterals compared with patients with some collaterals (mean fold induction 1.9+/-0.2 versus 3.2+/-0.3, P<0.0001). After subjecting the data to ANCOVA, using as covariates a number of factors that might influence the amount of collateral formation (ie, age, sex, diabetes, smoking, hypercholesterolemia), patients with no collaterals still have a significantly lower hypoxic induction of VEGF than patients with collaterals. CONCLUSIONS This study provides evidence in support of the hypothesis that the ability to respond to progressive coronary artery stenosis is strongly associated with the ability to induce VEGF in response to hypoxia. The observed interindividual heterogeneity in this response may be due to environmental, epigenetic, or genetic causes. This interindividual heterogeneity may also help to explain the variable angiogenic responses seen in other conditions such as diabetic retinopathy and solid tumors.


Journal of Biological Chemistry | 1998

The Epithelial Sodium-Hydrogen Antiporter Na+/H+ Exchanger 3 Accumulates and Is Functional in Recycling Endosomes

D'Souza S; Garcia-Cabado A; Yu F; Teter K; Lukacs G; Karl Skorecki; Moore Hp; John Orlowski; Grinstein S

Na+/H+ exchangers (NHEs) mediate electroneutral exchange of Na+ for H+ and thereby play a central role in pH regulation and Na+ homeostasis. NHE3, the predominant epithelial isoform, is found in apical membranes of renal and intestinal epithelial cells, where it contributes to NaCl (re)absorption. NHE activity has been detected in endomembrane vesicles of epithelial cells, but the precise compartment involved and its functional role have not been defined. Many aspects of the targeting machinery that defines the compartmentation and polarity of epithelia are also functional in nonepithelial cells. We therefore compared the targeting of NHE1, the basolateral isoform, with that of NHE3 in Chinese hamster ovary cells. To circumvent the confounding effects of endogenous exchangers, epitope-tagged constructs of NHE1 and NHE3 were stably expressed in antiport-deficient (AP-1) cells. While NHE1 was found almost exclusively in the surface membrane, NHE3 was also found intracellularly, accumulating in a juxtanuclear compartment. Confocal microscopy showed this compartment to be distinct from the Golgi,trans-Golgi network, and lysosomes. Instead, NHE3 colocalized with transferrin receptors and with cellubrevin, markers of recycling endosomes. The activity of NHE3 in endomembranes was assessed by targeting pH-sensitive probes to the recycling endosomes using a chimeric cellubrevin construct with an accessible extracellular epitope. Fluorescence ratio imaging indicated that cellubrevin resides intracellularly in an acidic compartment. In AP-1 cells, endosomal acidification was unaffected by omission of Na+but was dissipated entirely by concanamycin, a blocker of H+-ATPases. In contrast, the cellubrevin compartment was more acidic in NHE3 transfectants, and the acidification was only partially reduced by concanamycin. Moreover, removal of extracellular Na+ resulted in a significant alkalization of the endocytic compartment. These results indicate that NHE3 is present and active in recycling endosomes. By recruiting NHE3 to the plasma membrane, modulation of vesicular traffic could contribute to the regulation of Na+ reabsorption across epithelia.


Journal of Biological Chemistry | 1996

Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-β1 on gene expression

Karl Skorecki; Howard Goldberg

The kinases and regulatory proteins that convey signals initiated by transforming growth factor-β (TGF-β) to the nucleus are poorly characterized. To study the role of the extracellular signal-regulated kinase (ERK) pathway in this process, we transiently transfected NIH 3T3 fibroblasts with TGF-β-responsive luciferase reporter genes and expression vectors designed to interrupt this kinase cascade. Mitogen-activated protein (MAP) kinase phosphatase-1 and a dominant negative MAP/ERK kinase 1 mutant reduced stimulation of plasminogen activator inhibitor-1 (PAI-1) promoter activity by TGF-β1 from 11.5- to 4-fold and 4.9-fold, respectively. Similar results were observed with the type I collagen promoters. TGF-β1 increased ERK1 activity 4.5-fold at 5 min and 3.1-fold at 3 h, while Jun kinase and p38 activity were not affected. Cotransfection of a dominant negative mutant of the small G protein, Rac, but not dominant negative Ras, Cdc42, or Rho mutants, reduced the effects of TGF-β1 on the PAI-1 promoter by approximately half. In support of a role for Rac in signaling by TGF-β, GTP binding to Rac was increased 3.7-fold following exposure of NIH 3T3 cells to TGF-β1 for 3 min. These findings indicate that TGF-β1 modulates gene expression partly through ERK and Rac in NIH 3T3 cells.


Human Molecular Genetics | 2008

Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions.

Shiran Yehezkel; Yardena Segev; Evani Viegas-Péquignot; Karl Skorecki; Sara Selig

Telomeres and adjacent subtelomeric regions are packaged as heterochromatin in many organisms. The heterochromatic features include DNA methylation, histones H3-Lys9 (Lysine 9) and H4-Lys20 (Lysine 20) methylation and heterochromatin protein1 alpha binding. Subtelomeric DNA is hypomethylated in human sperm and ova, and these regions are subjected to de novo methylation during development. In mice this activity is carried out by DNA methyltransferase 3b (Dnmt3b). Mutations in DNMT3B in humans lead to the autosomal-recessive ICF (immunodeficiency, centromeric region instability, facial anomalies) syndrome. Here we show that, in addition to several satellite and non-satellite repeats, the subtelomeric regions in lymphoblastoid and fibroblast cells of ICF patients are also hypomethylated to similar levels as in sperm. Furthermore, the telomeres are abnormally short in both the telomerase-positive and -negative cells, and many chromosome ends lack detectable telomere fluorescence in situ hybridization signals from either one or both sister-chromatids. In contrast to Dnmt3a/b(-/-) mouse embryonic stem cells, increased telomere sister-chromatid exchange was not observed in ICF cells. Hypomethylation of subtelomeric regions was associated in the ICF cells with advanced telomere replication timing and elevated levels of transcripts emanating from telomeric regions, known as TERRA (telomeric-repeat-containing RNA) or TelRNA. The current findings provide a mechanistic explanation for the abnormal telomeric phenotype observed in ICF syndrome and highlights the link between TERRA/TelRNA and structural telomeric integrity.


American Journal of Human Genetics | 2006

The Matrilineal Ancestry of Ashkenazi Jewry: Portrait of a Recent Founder Event

Doron M. Behar; Ene Metspalu; Toomas Kivisild; Alessandro Achilli; Yarin Hadid; Shay Tzur; Luísa Pereira; António Amorim; Lluis Quintana-Murci; Kari Majamaa; Corinna Herrnstadt; Neil Howell; Oleg Balanovsky; Ildus Kutuev; Andrey Pshenichnov; David Gurwitz; Batsheva Bonne-Tamir; Antonio Torroni; Richard Villems; Karl Skorecki

Both the extent and location of the maternal ancestral deme from which the Ashkenazi Jewry arose remain obscure. Here, using complete sequences of the maternally inherited mitochondrial DNA (mtDNA), we show that close to one-half of Ashkenazi Jews, estimated at 8,000,000 people, can be traced back to only 4 women carrying distinct mtDNAs that are virtually absent in other populations, with the important exception of low frequencies among non-Ashkenazi Jews. We conclude that four founding mtDNAs, likely of Near Eastern ancestry, underwent major expansion(s) in Europe within the past millennium.


American Journal of Human Genetics | 2008

The Genetic Legacy of Religious Diversity and Intolerance: Paternal Lineages of Christians, Jews, and Muslims in the Iberian Peninsula

Susan M. Adams; Elena Bosch; Patricia Balaresque; Stephane Ballereau; Andrew C. Lee; Eduardo Arroyo; Ana María López-Parra; Mercedes Aler; Marina S. Gisbert Grifo; Maria Brion; Angel Carracedo; João Lavinha; Begoña Martínez-Jarreta; Lluis Quintana-Murci; Antònia Picornell; M. M. Ramon; Karl Skorecki; Doron M. Behar; Francesc Calafell; Mark A. Jobling

Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics—North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement—more marked in some regions than in others—plus the effects of genetic drift.


American Journal of Human Genetics | 2008

Mitochondrial Hsp60 Chaperonopathy Causes an Autosomal-Recessive Neurodegenerative Disorder Linked to Brain Hypomyelination and Leukodystrophy

Daniella Magen; Costa Georgopoulos; Peter Bross; Debbie Ang; Yardena Segev; Dorit Goldsher; Alexandra Nemirovski; Eli Shahar; Sarit Ravid; Anthony Luder; Bayan Heno; Ruth Gershoni-Baruch; Karl Skorecki; Hanna Mandel

Hypomyelinating leukodystrophies (HMLs) are disorders involving aberrant myelin formation. The prototype of primary HMLs is the X-linked Pelizaeus-Merzbacher disease (PMD) caused by mutations in PLP1. Recently, homozygous mutations in GJA12 encoding connexin 47 were found in patients with autosomal-recessive Pelizaeus-Merzbacher-like disease (PMLD). However, many patients of both genders with PMLD carry neither PLP1 nor GJA12 mutations. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD, in which linkage to PLP1 and GJA12 was excluded. Using homozygosity mapping and mutation analysis, we have identified a homozygous missense mutation (D29G) not previously described in HSPD1, encoding the mitochondrial heat-shock protein 60 (Hsp60) in all affected individuals. The D29G mutation completely segregates with the disease-associated phenotype. The pathogenic effect of D29G on Hsp60-chaperonin activity was verified by an in vivo E. coli complementation assay, which demonstrated compromised ability of the D29G-Hsp60 mutant protein to support E. coli survival, especially at high temperatures. The disorder, which we have termed MitCHAP-60 disease, can be distinguished from spastic paraplegia 13 (SPG13), another Hsp60-associated autosomal-dominant neurodegenerative disorder, by its autosomal-recessive inheritance pattern, as well as by its early-onset, profound cerebral involvement and lethality. Our findings suggest that Hsp60 defects can cause neurodegenerative pathologies of varying severity, not previously suspected on the basis of the SPG13 phenotype. These findings should help to clarify the important role of Hsp60 in myelinogenesis and neurodegeneration.


The New England Journal of Medicine | 2000

Haptoglobin phenotype and vascular complications in patients with diabetes.

Andrew P. Levy; Ariel Roguin; Irit Hochberg; Paula Herer; Stuart Marsh; Farid Nakhoul; Karl Skorecki

To the Editor: Vascular complications cause serious morbidity in patients with diabetes mellitus. Two such complications are diabetic nephropathy and restenosis after percutaneous transluminal coro...

Collaboration


Dive into the Karl Skorecki's collaboration.

Top Co-Authors

Avatar

Maty Tzukerman

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doron M. Behar

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar

Shay Tzur

Rambam Health Care Campus

View shared research outputs
Top Co-Authors

Avatar

Pravin C. Singhal

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Liran I. Shlush

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sara Selig

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiqian Lan

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ashwani Malhotra

The Feinstein Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge