Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiqian Lan is active.

Publication


Featured researches published by Xiqian Lan.


American Journal of Physiology-renal Physiology | 2014

APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability

Xiqian Lan; Aakash Jhaveri; Kang Cheng; Hongxiu Wen; Moin A. Saleem; Peter W. Mathieson; Joanna Mikulak; Sharon Aviram; Ashwani Malhotra; Karl Skorecki; Pravin C. Singhal

Development of higher rates of nondiabetic glomerulosclerosis (GS) in African Americans has been attributed to two coding sequence variants (G1 and G2) in the APOL1 gene. To date, the cellular function and the role of APOL1 variants (Vs) in GS are still unknown. In this study, we examined the effects of overexpressing wild-type (G0) and kidney disease risk variants (G1 and G2) of APOL1 in human podocytes using a lentivirus expression system. Interestingly, G0 inflicted podocyte injury only at a higher concentration; however, G1 and G2 promoted moderate podocyte injury at lower and higher concentrations. APOL1Vs expressing podocytes displayed diffuse distribution of both Lucifer yellow dye and cathepsin L as manifestations of enhanced lysosomal membrane permeability (LMP). Chloroquine attenuated the APOL1Vs-induced increase in podocyte injury, consistent with targeting lysosomes. The chloride channel blocker DIDS prevented APOL1Vs- induced injury, indicating a role for chloride influx in osmotic swelling of lysosomes. Direct exposure of noninfected podocytes with conditioned media from G1- and G2-expressing podocytes also induced injury, suggesting a contributory role of the secreted component of G1 and G2 as well. Adverse host factors (AHFs) such as hydrogen peroxide, hypoxia, TNF-α, and puromycin aminonucleoside augmented APOL1- and APOL1Vs-induced podocyte injury, while the effect of human immunodeficiency virus (HIV) on podocyte injury was overwhelming under conditions of APOLVs expression. We conclude that G0 and G1 and G2 APOL1 variants have the potential to induce podocyte injury in a manner which is further augmented by AHFs, with HIV infection being especially prominent.


Experimental and Molecular Pathology | 2013

Transplantation of bone marrow-derived MSCs improves cisplatinum-induced renal injury through paracrine mechanisms

Kang Cheng; Partab Rai; Andrei Plagov; Xiqian Lan; Dileep Kumar; Divya Salhan; Shabina Rehman; Ashwani Malhotra; Kuldeep K. Bhargava; Christopher J. Palestro; Sanjeev Gupta; Pravin C. Singhal

Mesenchymal stem cells (MSCs) have been reported to preserve renal function in various models of acute kidney injury (AKI). Different routes were used to transplant MSCs but the role of cell transplantation routes in directing outcomes has been unknown. In the present study, we evaluated organ bio-distributions of transplanted MSCs, and correlated survival of transplanted cells with outcomes in mice with cisplatinum-induced AKI. We found that after intravenous administration, MSCs were largely localized in pulmonary capillaries and only a minute fraction of MSCs entered kidneys and the cells survived only transiently. Therefore, we also transplanted MSCs via intraperitoneal and renal subcapsular routes. Transplanted MSCs survived longer in peritoneal cavity and renal subcapsular space. Interestingly, when MSC transplantation was followed by cisplatinum-induced AKI, renal morphology and renal functions were better preserved, irrespective of the cell transplantation route. As transplanted MSCs did not migrate to kidneys from either peritoneal cavity or renal subcapsular space, this finding suggested that migration of cells was not required for the beneficial response. The possibility of indirect mechanisms was confirmed when administration of the conditioned medium from MSCs also protected renal tubular cells from cisplatinum-induced cytotoxicity. We identified presence of over forty regulatory cytokines in the conditioned medium obtained from MSCs. Since paracrine factors released by transplanted cells accounted for improvements, it appears that the route of cell transplantation is not critical for realizing benefits of cell therapy with MSCs in AKI. Studies of specific cytokines secreted by MSCs will help to obtain new therapeutic mechanisms for renal protection.


PLOS ONE | 2013

Morphine Induces Albuminuria by Compromising Podocyte Integrity

Xiqian Lan; Partab Rai; Nirupama Chandel; Kang Cheng; Rivka Lederman; Moin A. Saleem; Peter W. Mathieson; Mohammad Husain; John T. Crosson; Kalpna Gupta; Ashwani Malhotra; Pravin C. Singhal

Morphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular. Mice were administered either normal saline or morphine for 72 h, then urine samples were collected and kidneys were subsequently isolated for immunohistochemical studies and Western blot. For in vitro studies, human podocytes were treated with morphine and then probed for the molecular markers of slit diaphragm. Morphine-receiving mice displayed a significant increase in albuminuria and showed effacement of podocyte foot processes. In both in vivo and in vitro studies, the expression of synaptopodin, a molecular marker for podocyte integrity, and the slit diaphragm constituting molecules (SDCM), such as nephrin, podocin, and CD2-associated protein (CD2AP), were decreased in morphine-treated podocytes. In vitro studies indicated that morphine modulated podocyte expression of SDCM through opiate mu (MOR) and kappa (KOR) receptors. Since morphine also enhanced podocyte oxidative stress, the latter seems to contribute to decreased SDCM expression. In addition, AKT, p38, and JNK pathways were involved in morphine-induced down regulation of SDCM in human podocytes. These findings demonstrate that morphine has the potential to alter the glomerular filtration barrier by compromising the integrity of podocytes.


Journal of Leukocyte Biology | 2013

VDR hypermethylation and HIV-induced T cell loss

Nirupama Chandel; Mohammad Husain; Hersh Goel; Divya Salhan; Xiqian Lan; Ashwani Malhotra; Joseph McGowan; Pravin C. Singhal

Epigenetics contributes to the development of variety of diseases by modulation of gene expression. We evaluated the effect of HIV‐induced VDR methylation on loss of TCs. HIV/TC displayed enhanced VDR‐CpG methylation and increased expression of Dnmt3b but attenuated expression of VDR. A demethylating agent, AZA, inhibited this effect of HIV. HIV/TC also displayed the activation of the RAS, which was reversed by EB (a VDA). Further, HIV/TCs displayed enhanced generation of ROS and induction of DSBs but attenuated DNA repair response. However, in the presence of AZA, EB, LOS (a RAS blocker), Cat, and tempol (free radical scavengers), HIV‐induced TC ROS generation and induction of DSBs were attenuated but associated with enhanced DNA repair. Additionally, AZA, EB, and LOS provided protection against HIV‐induced TC apoptosis. These findings suggested that HIV‐induced TC apoptosis was mediated through ROS generation in response to HIV‐induced VDR methylation and associated activation of the RAS.


Experimental and Molecular Pathology | 2015

Protein domains of APOL1 and its risk variants.

Xiqian Lan; Hongxiu Wen; Rivka Lederman; Ashwani Malhotra; Joanna Mikulak; Waldemar Popik; Karl Skorecki; Pravin C. Singhal

Increasing lines of evidence have demonstrated that the development of higher rates of non-diabetic glomerulosclerosis (GS) in African Americans can be attributed to two coding sequence variants (G1 and G2) in the Apolipoprotein L1 (APOL) gene. Recent studies indicate that the gene products of these APOL1 risk variants have augmented toxicity to kidney cells. However, the biological characteristics of APOL1 and its risk variants are not well elucidated. The APOL1 protein can be divided into several functional domains, including signal peptide (SP), pore forming domain (PFD), membrane address domain (MAD), and SRA-interacting domain. To investigate the relative contribution of each domain to cell injury, we constructed a serial expression vectors to delete or express each domain. These vectors were transfected into the human embryonic kidney cell line 293T, and then compared the cytotoxicity. In addition, we conducted studies in which APOL1 wild type (G0) was co-transfected in combination with G1 or G2 to see whether G0 could counteract the toxicity of the risk variants. The results showed that deleting the SP did not abolish the toxicity of APOL1, though deletion of 26 amino acid residues of the mature peptide at the N-terminal partially decreased the toxicity. Deleting PFD or MAD or SRA-interacting domain abolished toxicity, while, overexpressing each domain alone could not cause toxicity to the host cells. Deletion of the G2 sites while retaining G1 sites in the risk state resulted in persistent toxicity. Either deletion or exchanging the BH3 domain in the PFD led to complete loss of the toxicity in this experimental platform. Adding G0 to either G1 or G2 did not attenuate the toxicity of the either moiety. These results indicate that the integrity of the mature APOL1 protein is indispensable for its toxicity. Our study not only reveals the contribution of each domain of the APOL1 protein to cell injury, but also highlights some potential suggested targets for drug design to prevent or treat APOL1-associated nephropathy.


American Journal of Physiology-renal Physiology | 2013

mTOR plays a critical role in p53-induced oxidative kidney cell injury in HIVAN

Partab Rai; Andrei Plagov; Xiqian Lan; Nirupama Chandel; Tejinder Singh; Rivka Lederman; Kamesh Ayasolla; Peter W. Mathieson; Moin A. Saleem; Mohammad Husain; Ashwani Malhotra; Praveen N. Chander; Pravin C. Singhal

Oxidative stress has been implicated to contribute to HIV-induced kidney cell injury; however, the role of p53, a modulator of oxidative stress, has not been evaluated in the development of HIV-associated nephropathy (HIVAN). We hypothesized that mammalian target of rapamycin (mTOR) may be critical for the induction of p53-mediated oxidative kidney cell injury in HIVAN. To test our hypothesis, we evaluated the effect of an mTOR inhibitor, rapamycin, on kidney cell p53 expression, downstream signaling, and kidney cell injury in both in vivo and in vitro studies. Inhibition of the mTOR pathway resulted in downregulation of renal tissue p53 expression, associated downstream signaling, and decreased number of sclerosed glomeruli, tubular microcysts, and apoptosed and 8-hydroxy deoxyguanosine (8-OHdG)-positive (+ve) cells in Tg26 mice. mTOR inhibition not only attenuated kidney cell expression of p66ShcA and phospho-p66ShcA but also reactivated the redox-sensitive stress response program in the form of enhanced expression of manganese superoxide dismutase (MnSOD) and catalase. In in vitro studies, the mTOR inhibitor also provided protection against HIV-induced podocyte apoptosis. Moreover, mTOR inhibition downregulated HIV-induced podocyte (HP/HIV) p53 expression. Since HP/HIV silenced for mTOR displayed a lack of expression of p53 as well as attenuated podocyte apoptosis, this suggests that mTOR is critical for kidney cell p53 activation and associated oxidative kidney cell injury in the HIV milieu.


Experimental and Molecular Pathology | 2015

Vascular smooth muscle cells contribute to APOL1-induced podocyte injury in HIV milieu

Xiqian Lan; Hongxiu Wen; Moin A. Saleem; Joanna Mikulak; Ashwani Malhotra; Karl Skorecki; Pravin C. Singhal

Clinical reports have demonstrated that higher rates of non-diabetic glomerulosclerosis in African Americans can be attributed to two coding sequence variants (G1 and G2) in the APOL1 gene; however, the underlying mechanism is still unknown. Kidney biopsy data suggest enhanced expression of APOL1/APOL1 variants (Vs) in smooth muscle cells (SMCs) of renal vasculature. Since APOL1 is a secretory protein of relatively low molecular weight (41kDa), SMCs may be a contributory endocrine/paracrine source of APOL1 wild type (WT)/APOL1Vs in the glomerular capillary perfusate percolating podocytes. In the present study, we tested the hypothesis that an HIV milieu stimulated secretion of APOL1 and its risk variants by arterial SMCs contributes to podocyte injury. Human umbilical artery smooth muscle cells (HSMCs)-treated with conditioned media (CM) of HIV-infected peripheral mononuclear cells (PBMC/HIV-CM), CM of HIV-infected U939 cells, or recombinant IFN-γ displayed enhanced expression of APOL1. Podocytes co-cultured in trans-wells with HSMCs-over expressing APOL1WT showed induction of injury; however, podocytes co-cultured with HSMC-over expressing either APOL1G1 or APOL1G2 showed several folds greater injury when compared to HSMC-over expressing APOL1WT. Conditioned media collected from HSMC-over-expressing APOL1G1/APOL1G2 (HSMC/APOL1G1-CM or HSMC/APOL1G2-CM) also displayed higher percentages of injured podocytes in the form of swollen cells, leaky lysosomes, loss of viability, and enhanced sensitivity to adverse host factors when compared to HSMC/APOL1WT-CM. Notably, HSMC/APOL1WT-CM promoted podocyte injury only at a significantly higher concentrations compared to HSMC/APOL1G1/G2-CM. We conclude that HSMCs could serve as an endocrine/paracrine source of APOL1Vs, which mediate accelerated podocyte injury in HIV milieu.


Experimental and Molecular Pathology | 2013

MicroRNAs in HIV-associated nephropathy (HIVAN)

Kang Cheng; Partab Rai; Andrei Plagov; Xiqian Lan; Ashaan Subrati; Mohammad Husain; Ashwani Malhotra; Pravin C. Singhal

MicroRNAs (miRNAs) play a critical role in multiple biological and metabolic processes. Recent studies suggested that miRNAs are critical in the maintenance of glomerular homeostasis in both physiological and pathological states. However, the role of miRNAs in the pathogenesis of HIV-associated nephropathy (HIVAN) has not been studied. In the present study, we have used a microarray-based approach in combination with real-time PCR to profile the miRNA expression patterns in HIV-1 transgenic mice (Tg26). Our results showed that 13 miRNAs, which belong to 11 miRNA families, were downregulated in HIVAN when compared with control mice. These miRNAs were classified into 20 functional categories. In in vitro studies, we examined the expression of specific miRNAs in HIV-1 transduced human podocytes. Our results showed that HIV-1 downregulated miRNA expression, specifically of miR-200 and miR-33. These studies suggest that miRNAs contributed to the development of the proliferative phenotype of HIVAN. Further functional analysis of these miRNAs in HIVAN animal model will not only enhance understanding of the pathogenesis but would also lead to the development of therapeutic strategies for HIVAN patients.


PLOS ONE | 2016

Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress

Xiqian Lan; Rivka Lederman; Judith M. Eng; Seyedeh Shadafarin Marashi Shoshtari; Moin A. Saleem; Ashwani Malhotra; Pravin C. Singhal

Background Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD). Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury. Methods To determine the expression of nicotinic acetylcholine receptors (nAChR subunits) in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS) generation (via DCFDA loading followed by fluorometric analysis), proliferation, and apoptosis (morphologic assays). We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury. Results Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC) and TEMPOL (superoxide dismutase mimetic agent) inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte. Conclusions Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides insight into molecular mechanisms involved in smoking associated progression of chronic kidney disease.


Journal of Molecular Biology | 2015

Epigenetic Modulation of Human Podocyte Vitamin D Receptor in HIV Milieu.

Nirupama Chandel; Kameshwar S. Ayasolla; Xiqian Lan; Maria Sultana-Syed; Amrita Chawla; Rivka Lederman; Vasupradha Vethantham; Moin A. Saleem; Praveen N. Chander; Ashwani Malhotra; Pravin C. Singhal

HIV (human immunodeficiency virus) has been reported to induce podocyte injury through down regulation of vitamin D receptor (VDR) and activation of renin angiotensin system; however, the involved mechanism is not clear. Since HIV has been reported to modulate gene expression via epigenetic phenomena, we asked whether epigenetic factors contribute to down regulation of VDR. Kidney cells in HIV transgenic mice and HIV-infected podocytes (HIV/HPs) displayed enhanced expression of SNAIL, a repressor of VDR. To elucidate the mechanism, we studied the effect of HIV on expression of molecules involved in SNAIL repressor complex formation and demonstrated that HIV enhances expression of the histone deacetylase HDAC1 and DNA methyl transferases DNMT3b and DNMT1. 293T cells, when stably transfected with SNAIL (SNAIL/293T), displayed suppressed transcription and translation of VDR. In SNAIL/293T cells, co-immunoprecipitation studies revealed the association of HDAC1, DNMT3b, DNMT1, and mSin3A with SNAIL. Chromatin immunoprecipitation experiments confirmed the presence of the SNAIL repressor complex at the VDR promoter. Consistent with the enhanced DNA methyl transferase expression in HIV/HPs, there was an increased CpG methylation at the VDR promoter. Chromatin immunoprecipitation assay confirmed occurrence of H3K4 trimethylation on SNAIL promoter. Neither a VDR agonist (VDA) nor an HDAC inhibitor (HDACI) nor a demethylating agent (DAC) individually could optimally up regulate VDR in HIV milieu. However, VDA and HDACI when combined were successful in de-repressing VDR expression. Our findings demonstrate that SNAIL recruits multiple chromatin enzymes to form a repressor complex in HIV milieu that down regulates VDR expression.

Collaboration


Dive into the Xiqian Lan's collaboration.

Top Co-Authors

Avatar

Pravin C. Singhal

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ashwani Malhotra

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongxiu Wen

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kang Cheng

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mohammad Husain

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nirupama Chandel

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Partab Rai

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Rivka Lederman

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Karl Skorecki

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge