Karoliina Pelttari
University of Basel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karoliina Pelttari.
Science Translational Medicine | 2014
Karoliina Pelttari; Benjamin E. Pippenger; Marcus Mumme; Sandra Feliciano; Celeste Scotti; Pierre Mainil-Varlet; Alfredo Procino; Brigitte von Rechenberg; Thomas Schwamborn; Marcel Jakob; Clemente Cillo; Andrea Barbero; Ivan Martin
HOX-negative, differentiated neural crest–derived adult cells from the nasal septum display self-renewal capacity and environmental plasticity and are compatible for articular cartilage repair. Cells from Nose Repair Tissue in Joint Cartilage repair remains a yet unmet clinical need, with few viable cell therapy options available. Taking cells from the knee or ankle to repair worn cartilage requires additional surgery and, in turn, pain and healing for the patient. As such, a new, accessible cell source would greatly benefit these patients. Here, Pelttari and colleagues looked up the nose for cells that may have the capacity to regenerate cartilage. Nasal septum cells arise from the neuroectoderm—the tissue that gives rise to the nervous system—and are better at repairing tissues than their mesoderm counterparts. These regenerative capabilities have been attributed to a lack of homeobox (HOX) gene expression. The authors therefore investigated whether nasal chondrocytes (HOX-negative, neuroectoderm origin) were compatible with an articular cartilage environment, like the knee joint (HOX-positive, mesoderm origin). The authors discovered that adult human nasal chondrocytes were able to self-renew and also, to their surprise, adopt a HOX-positive profile upon implantation into a mesoderm environment; in goats, this led to repair of experimental articular cartilage defects. In an ongoing clinical trial, human nasal chondrocytes have been shown to be safe once transplanted, suggesting translation of this new, easy-to-access cell source for repairing damaged joints. In embryonic models and stem cell systems, mesenchymal cells derived from the neuroectoderm can be distinguished from mesoderm-derived cells by their Hox-negative profile—a phenotype associated with enhanced capacity of tissue regeneration. We investigated whether developmental origin and Hox negativity correlated with self-renewal and environmental plasticity also in differentiated cells from adults. Using hyaline cartilage as a model, we showed that adult human neuroectoderm-derived nasal chondrocytes (NCs) can be constitutively distinguished from mesoderm-derived articular chondrocytes (ACs) by lack of expression of specific HOX genes, including HOXC4 and HOXD8. In contrast to ACs, serially cloned NCs could be continuously reverted from differentiated to dedifferentiated states, conserving the ability to form cartilage tissue in vitro and in vivo. NCs could also be reprogrammed to stably express Hox genes typical of ACs upon implantation into goat articular cartilage defects, directly contributing to cartilage repair. Our findings identify previously unrecognized regenerative properties of HOX-negative differentiated neuroectoderm cells in adults, implying a role for NCs in the unmet clinical challenge of articular cartilage repair. An ongoing phase 1 clinical trial preliminarily indicated the safety and feasibility of autologous NC–based engineered tissues for the treatment of traumatic articular cartilage lesions.
Journal of Cellular and Molecular Medicine | 2015
Benjamin E. Pippenger; Manuela Ventura; Karoliina Pelttari; Sandra Feliciano; Claude Jaquiery; Arnaud Scherberich; X. Frank Walboomers; Andrea Barbero; Ivan Martin
Nasal chondrocytes (NC) derive from the same multipotent embryological segment that gives rise to the majority of the maxillofacial bone and have been reported to differentiate into osteoblast‐like cells in vitro. In this study, we assessed the capacity of adult human NC, appropriately primed towards hypertrophic or osteoblastic differentiation, to form bone tissue in vivo. Hypertrophic induction of NC‐based micromass pellets formed mineralized cartilaginous tissues rich in type X collagen, but upon implantation into subcutaneous pockets of nude mice remained avascular and reverted to stable hyaline‐cartilage. In the same ectopic environment, NC embedded into ceramic scaffolds and primed with osteogenic medium only sporadically formed intramembranous bone tissue. A clonal study could not demonstrate that the low bone formation efficiency was related to a possibly small proportion of cells competent to become fully functional osteoblasts. We next tested whether the cues present in an orthotopic environment could induce a more efficient direct osteoblastic transformation of NC. Using a nude rat calvarial defect model, we demonstrated that (i) NC directly participated in frank bone formation and (ii) the efficiency of survival and bone formation by NC was significantly higher than that of reference osteogenic cells, namely bone marrow‐derived mesenchymal stromal cells. This study provides a proof‐of‐principle that NC have the plasticity to convert into bone cells and thereby represent an easily available cell source to be further investigated for craniofacial bone regeneration.
International Journal of Molecular Sciences | 2017
Maximilian Burger; Amir Steinitz; Jeroen Geurts; Benjamin Pippenger; Dirk J. Schaefer; Ivan Martin; Andrea Barbero; Karoliina Pelttari
The accumulation of senescent cells is implicated in the pathology of several age-related diseases. While the clearance of senescent cells has been suggested as a therapeutic target for patients with osteoarthritis (OA), cellular senescence of bone-resident osteoblasts (OB) remains poorly explored. Since oxidative stress is a well-known inducer of cellular senescence, we here investigated the effect of antioxidant supplementation on the isolation efficiency, expansion, differentiation potential, and transcriptomic profile of OB from osteoarthritic subchondral bone. Bone chips were harvested from sclerotic and non-sclerotic regions of the subchondral bone of human OA joints. The application of 0.1 mM ascorbic acid-2-phosphate (AA) significantly increased the number of outgrowing cells and their proliferation capacity. This enhanced proliferative capacity showed a negative correlation with the amount of senescent cells and was accompanied by decreased expression of reactive oxygen species (ROS) in cultured OB. Expanded cells continued to express differentiated OB markers independently of AA supplementation and demonstrated no changes in their capacity to osteogenically differentiate. Transcriptomic analyses revealed that apoptotic, cell cycle–proliferation, and catabolic pathways were the main pathways affected in the presence of AA during OB expansion. Supplementation with AA can thus help to expand subchondral bone OB in vitro while maintaining their special cellular characteristics. The clearance of such senescent OB could be envisioned as a potential therapeutic target for the treatment of OA.
Annals of Translational Medicine | 2015
Karoliina Pelttari; Andrea Barbero; Ivan Martin
When a healthy joint progressively becomes osteoarthritic, the structures of the affected cartilage, bone and synovia undergo an initial phase of rearrangement. The exact molecular and cellular events occurring in this early osteoarthritic transition phase still remain elusive. Homeobox (Hox) genes encode for transcription factors that typically regulate limb morphogenesis and skeletal formation during development. More recently they were shown to be required for tissue remodelling and homeostasis in adults and to be modulated in a variety of pathologies. Here we present and discuss the hypothesis that dysregulation of specific Hox genes is associated with the onset and development of osteoarthritis (OA). Discovering mechanisms modulating Hox gene expression could not only provide important information in understanding OA pathology and its initiation, but also help to identify biomarkers reflecting the state of early OA. This knowledge would allow anticipating the time window for clinical treatment of the affected cartilage and assist in the development of innovative strategies to restore joint homeostasis, e.g., by cell or gene therapy.
Swiss Medical Weekly | 2009
Karoliina Pelttari; Anke Wixmerten; Ivan Martin
Tissue Engineering Part C-methods | 2010
Sylvie Miot; Roberto Gianni-Barrera; Karoliina Pelttari; Chitrangada Acharya; Pierre Mainil-Varlet; Henriette Juelke; Claude Jaquiery; Christian Candrian; Andrea Barbero; Ivan Martin
Osteoarthritis and Cartilage | 2018
M.G. Burger; A. Steinitz; J. Geurts; B.E. Pippenger; D.J. Schäfer; Ivan Martin; Andrea Barbero; Karoliina Pelttari
Osteoarthritis and Cartilage | 2016
Karoliina Pelttari; Andrea Barbero; Ivan Martin
Journal of Bone and Joint Surgery-british Volume | 2014
Marcus Mumme; Karoliina Pelttari; Sinan Gueven; Katja Nuss; B. von Rechenberg; Marcel Jakob; Ivan Martin; Andrea Barbero
Archive | 2012
Marcus Mumme; Karoliina Pelttari; Sinan Gueven; Katja Nuss; Brigitte von Rechenberg; Marcel Jakob; Ivan Martin; Andrea Barbero