Karoly Mirnics
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karoly Mirnics.
Neuron | 2000
Karoly Mirnics; Frank A. Middleton; Adriana Marquez; David A. Lewis; Pat Levitt
Microarray expression profiling of prefrontal cortex from matched pairs of schizophrenic and control subjects and hierarchical data analysis revealed that transcripts encoding proteins involved in the regulation of presynaptic function (PSYN) were decreased in all subjects with schizophrenia. Genes of the PSYN group showed a different combination of decreased expression across subjects. Over 250 other gene groups did not show altered expression. Selected PSYN microarray observations were verified by in situ hybridization. Two of the most consistently changed transcripts in the PSYN functional gene group, N-ethylmaleimide sensitive factor and synapsin II, were decreased in ten of ten and nine of ten subjects with schizophrenia, respectively. The combined data suggest that subjects with schizophrenia share a common abnormality in presynaptic function. We set forth a predictive, testable model.
The Journal of Neuroscience | 2007
Stephen P. Smith; Jennifer X. Li; Krassimira A. Garbett; Karoly Mirnics; Paul H. Patterson
Schizophrenia and autism are thought to result from the interaction between a susceptibility genotype and environmental risk factors. The offspring of women who experience infection while pregnant have an increased risk for these disorders. Maternal immune activation (MIA) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism, making MIA a useful model of the disorders. However, the mechanism by which MIA causes long-term behavioral deficits in the offspring is unknown. Here we show that the cytokine interleukin-6 (IL-6) is critical for mediating the behavioral and transcriptional changes in the offspring. A single maternal injection of IL-6 on day 12.5 of mouse pregnancy causes prepulse inhibition (PPI) and latent inhibition (LI) deficits in the adult offspring. Moreover, coadministration of an anti-IL-6 antibody in the poly(I:C) model of MIA prevents the PPI, LI, and exploratory and social deficits caused by poly(I:C) and normalizes the associated changes in gene expression in the brains of adult offspring. Finally, MIA in IL-6 knock-out mice does not result in several of the behavioral changes seen in the offspring of wild-type mice after MIA. The identification of IL-6 as a key intermediary should aid in the molecular dissection of the pathways whereby MIA alters fetal brain development, which can shed new light on the pathophysiological mechanisms that predispose to schizophrenia and autism.
The Journal of Neuroscience | 2003
Takanori Hashimoto; David W. Volk; Stephen M. Eggan; Karoly Mirnics; Joseph N. Pierri; Zhuoxin Sun; Allan R. Sampson; David A. Lewis
Markers of inhibitory neurotransmission are altered in the prefrontal cortex (PFC) of subjects with schizophrenia, and several lines of evidence suggest that these alterations may be most prominent in the subset of GABA-containing neurons that express the calcium-binding protein, parvalbumin (PV). To test this hypothesis, we evaluated the expression of mRNAs for PV, another calcium-binding protein, calretinin (CR), and glutamic acid decarboxylase (GAD67) in postmortem brain specimens from 15 pairs of subjects with schizophrenia and matched control subjects using single- and dual-label in situ hybridization. Signal intensity for PV mRNA expression in PFC area 9 was significantly decreased in the subjects with schizophrenia, predominately in layers III and IV. Analysis at the cellular level revealed that this decrease was attributable principally to a reduction in PV mRNA expression per neuron rather than by a decreased density of PV mRNA-positive neurons. In contrast, the same measures of CR mRNA expression were not altered in schizophrenia. These findings were confirmed by findings from cDNA microarray studies using different probes. Across the subjects with schizophrenia, the decrease in neuronal PV mRNA expression was highly associated (r = 0.84) with the decrease in the density of neurons containing detectable levels of GAD67 mRNA. Furthermore, simultaneous detection of PV and GAD67 mRNAs revealed that in subjects with schizophrenia only 55% of PV mRNA-positive neurons had detectable levels of GAD67 mRNA. Given the critical role that PV-containing GABA neurons appear to play in regulating the cognitive functions mediated by the PFC, the selective alterations in gene expression in these neurons may contribute to the cognitive deficits characteristic of schizophrenia.
Annals of Neurology | 2006
Ranjan Dutta; Jennifer McDonough; Xinghua Yin; John W. Peterson; Ansi Chang; Thalia Torres; Tatyana I. Gudz; Wendy B. Macklin; David A. Lewis; Robert J. Fox; Richard A. Rudick; Karoly Mirnics; Bruce D. Trapp
Degeneration of chronically demyelinated axons is a major cause of irreversible neurological disability in multiple sclerosis (MS) patients. Development of neuroprotective therapies will require elucidation of the molecular mechanisms by which neurons and axons degenerate.
Molecular Psychiatry | 2001
Karoly Mirnics; Frank A. Middleton; Gregg D. Stanwood; David A. Lewis; Pat Levitt
Complex defects in neuronal signaling may underlie the dysfunctions that characterize schizophrenia. Using cDNA microarrays, we discovered that the transcript encoding regulator of G-protein signaling 4 (RGS4) was the most consistently and significantly decreased in the prefrontal cortex of all schizophrenic subjects examined. The expression levels of ten other RGS family members represented on the microarrays were unchanged and hierarchical data analysis revealed that as a group, 274 genes associated with G-protein signaling were unchanged. Quantitative in situ hybridization verified the microarray RGS4 data, and demonstrated highly correlated decreases in RGS4 expression across three cortical areas of ten subjects with schizophrenia. RGS4 expression was not altered in the prefrontal cortex of subjects with major depressive disorder or in monkeys treated chronically with haloperidol. Interestingly, targets for 70 genes mapped to the major schizophrenia susceptibility locus 1q21–22 were present on the microarrays, of which only RGS4 gene expression was consistently altered. The combined data indicate that a decrease in RGS4 expression may be a common and specific feature of schizophrenia, which could be due either to genetic factors or a disease- specific adaptation, both of which could affect neuronal signaling.
Trends in Neurosciences | 2001
Karoly Mirnics; Frank A. Middleton; David A. Lewis; Pat Levitt
The level of cellular and molecular complexity of the nervous system creates unique problems for the neuroscientist in the design and implementation of functional genomic studies. Microarray technologies can be powerful, with limitations, when applied to the analysis of human brain disorders. Recently, using cDNA microarrays, altered gene expression patterns between subjects with schizophrenia and controls were shown. Functional data mining led to two novel discoveries: a consistent decrease in the group of transcripts encoding proteins that regulate presynaptic function; and the most changed gene, which has never been previously associated with schizophrenia, regulator of G-protein signaling 4. From these and other findings, a hypothesis has been formulated to suggest that schizophrenia is a disease of the synapse. In the context of a neurodevelopmental model, it is proposed that impaired mechanics of synaptic transmission in specific neural circuits during childhood and adolescence ultimately results in altered synapse formation or pruning, or both, which manifest in the clinical onset of the disease.
Molecular Psychiatry | 2008
Takanori Hashimoto; Dominique Arion; Travis L. Unger; Jaime Maldonado-Aviles; Harvey M. Morris; David W. Volk; Karoly Mirnics; David A. Lewis
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD67) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABAA receptor subunits (α1, α4, β3, γ2 and δ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD67, SST and α1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABAA receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
American Journal of Psychiatry | 2008
Takanori Hashimoto; H. Holly Bazmi; Karoly Mirnics; Qiang Wu; Allan R. Sampson; David A. Lewis
OBJECTIVE Individuals with schizophrenia exhibit disturbances in a number of cognitive, affective, sensory, and motor functions that depend on the circuitry of different cortical areas. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related genes. Consequently, the authors sought to determine whether this pattern of altered gene expression is restricted to the dorsolateral prefrontal cortex or could also contribute to the dysfunction of other cortical areas in subjects with schizophrenia. METHOD Real-time quantitative polymerase chain reaction was used to assess the levels of eight GABA-related transcripts in four cortical areas (dorsolateral prefrontal cortex, anterior cingulate cortex, and primary motor and primary visual cortices) of subjects (N=12) with schizophrenia and matched normal comparison subjects. RESULTS Expression levels of seven transcripts were lower in subjects with schizophrenia, with the magnitude of reduction for each transcript comparable across the four areas. The largest reductions were detected for mRNA encoding somatostatin and parvalbumin, followed by moderate decreases in mRNA expression for the 67-kilodalton isoform of glutamic acid decarboxylase, the GABA membrane transporter GAT-1, and the alpha 1 and delta subunits of GABA(A) receptors. In contrast, the expression of calretinin mRNA did not differ between the subject groups in any of the four areas. CONCLUSIONS Because the areas examined represent the major functional domains (e.g., association, limbic, motor, and sensory) of the cerebral cortex, our findings suggest that a conserved set of molecular alterations affecting GABA neurotransmission contribute to the pathophysiology of different clinical features of schizophrenia.
Molecular Psychiatry | 2011
Richard C. Shelton; J Claiborne; M Sidoryk-Wegrzynowicz; R Reddy; Michael Aschner; David A. Lewis; Karoly Mirnics
The etiology of major depression (MDD), a common and complex disorder, remains obscure. Gene expression profiling was conducted on post-mortem brain tissue samples from Brodmann Area 10 (BA10) in the prefrontal cortex from psychotropic drug-free persons with a history of MDD and age, gender, and post-mortem interval-matched normal controls (n=14 pairs of subjects). Microarray analysis was conducted using the Affymetrix Exon 1.0 ST arrays. A set of differential expression changes was determined by dual-fold change-probability criteria (∣average log ratios∣>0.585 [equivalent to a 1.5-fold difference in either direction], P<0.01), whereas molecular pathways of interest were evaluated using Gene Set Enrichment Analysis software. The results strongly implicate increased apoptotic stress in the samples from the MDD group. Three anti-apoptotic factors, Y-box-binding protein 1, caspase-1 dominant-negative inhibitor pseudo-ICE, and the putative apoptosis inhibitor FKGS2, were over-expressed. Gene set analysis suggested up-regulation of a variety of pro- and anti-inflammatory cytokines, including interleukin 1α (IL-1α), IL-2, IL-3, IL-5, IL-8, IL-9, IL-10, IL-12A, IL-13, IL-15, IL-18, interferon gamma (IFNγ), and lymphotoxin α (TNF superfamily member 1). The genes showing reduced expression included metallothionein 1M (MT1M), a zinc-binding protein with a significant function in the modulation of oxidative stress. The results of this study indicate that post-mortem brain tissue samples from BA10, a region that is involved in reward-related behavior, show evidence of local inflammatory, apoptotic, and oxidative stress in MDD.
Biological Psychiatry | 2007
Dominique Arion; Travis L. Unger; David A. Lewis; Pat Levitt; Karoly Mirnics
BACKGROUND Schizophrenia is characterized by complex gene expression changes. The transcriptome alterations in the prefrontal cortex have been the subject of several recent postmortem studies that yielded both convergent and divergent findings. METHODS To increase measurement precision, we used a custom-designed DNA microarray platform with long oligonucleotides and multiple probes with replicates. The platform was designed to assess the expression of > 1800 genes specifically chosen because of their hypothesized roles in the pathophysiology of schizophrenia. The gene expression differences in dorsolateral prefrontal cortex samples from 14 matched pairs of schizophrenia and control subjects were analyzed with two technical replicates and four data mining approaches. RESULTS In addition to replicating many expression changes in synaptic, oligodendrocyte, and signal transduction genes, we uncovered and validated a robust immune/chaperone transcript upregulation in the schizophrenia samples. CONCLUSIONS We speculate that the overexpression of SERPINA3, IFITM1, IFITM2, IFITM3, CHI3L1, MT2A, CD14, HSPB1, HSPA1B, and HSPA1A in schizophrenia subjects represents a long-lasting and correlated signature of an early environmental insult during development that actively contributes to the pathophysiology of prefrontal dysfunction.