Karthish Manthiram
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karthish Manthiram.
Journal of the American Chemical Society | 2012
Karthish Manthiram; A. Paul Alivisatos
Transition-metal oxide nanocrystals are interesting candidates for localized surface plasmon resonance hosts because they exhibit fascinating properties arising from the unique character of their outer-d valence electrons. WO(3-δ) nanoparticles are known to have intense visible and near-IR absorption, but the origin of the optical absorption has remained unclear. Here we demonstrate that metallic phases of WO(3-δ) nanoparticles exhibit a strong and tunable localized surface plasmon resonance, which opens up the possibility of rationally designing plasmonic tungsten oxide nanoparticles for light harvesting, bioimaging, and sensing.
Journal of the American Chemical Society | 2014
Karthish Manthiram; Brandon J. Beberwyck; A. Paul Alivisatos
Although the vast majority of hydrocarbon fuels and products are presently derived from petroleum, there is much interest in the development of routes for synthesizing these same products by hydrogenating CO2. The simplest hydrocarbon target is methane, which can utilize existing infrastructure for natural gas storage, distribution, and consumption. Electrochemical methods for methanizing CO2 currently suffer from a combination of low activities and poor selectivities. We demonstrate that copper nanoparticles supported on glassy carbon (n-Cu/C) achieve up to 4 times greater methanation current densities compared to high-purity copper foil electrodes. The n-Cu/C electrocatalyst also exhibits an average Faradaic efficiency for methanation of 80% during extended electrolysis, the highest Faradaic efficiency for room-temperature methanation reported to date. We find that the level of copper catalyst loading on the glassy carbon support has an enormous impact on the morphology of the copper under catalytic conditions and the resulting Faradaic efficiency for methane. The improved activity and Faradaic efficiency for methanation involves a mechanism that is distinct from what is generally thought to occur on copper foils. Electrochemical data indicate that the early steps of methanation on n-Cu/C involve a pre-equilibrium one-electron transfer to CO2 to form an adsorbed radical, followed by a rate-limiting non-electrochemical step in which the adsorbed CO2 radical reacts with a second CO2 molecule from solution. These nanoscale copper electrocatalysts represent a first step toward the preparation of practical methanation catalysts that can be incorporated into membrane-electrode assemblies in electrolyzers.
Angewandte Chemie | 2013
Prashant K. Jain; Karthish Manthiram; Jesse H. Engel; Sarah L. White; Jacob A. Faucheaux; A. Paul Alivisatos
A (nano)crystal-clear view: With doped semiconductor nanocrystals, local chemical events can be probed through their perturbation of the carrier density of the nanocrystal. Examples demonstrate that redox processes and ligand chemistry can induce changes in the vacancy density within copper(I) sulfide nanorods, allowing such events to be detected by strong shifts in localized surface plasmon resonance.
Biochemical and Biophysical Research Communications | 2009
John P. Welsh; Kedar G. Patel; Karthish Manthiram; James R. Swartz
Gaussia luciferase (GLuc) from the copepod Gaussia princeps is both the smallest and brightest known luciferase. GLuc catalyzes the oxidation of coelenterazine to produce an intense blue light but with a very short emission half-life. We report mutated GLucs with much longer luminescence half-lives that retain the same initial intensity as the wild-type enzyme. The GLuc variants were produced using cell-free protein synthesis to provide high yields and rapid production of fully active product as well as simple non-natural amino acid substitution. By incorporating homopropargylglycine and attaching PEG using azide-alkyne click reactions, we also show that the four methionines in GLuc are surface accessible. The mutants provide a significantly improved reporter protein for both in vivo and in vitro studies, and the successful non-natural amino acid incorporation and PEG attachment indicate the feasibility of producing useful bioconjugates using click attachment reactions.
ACS central science | 2015
Qian Chen; Hoduk Cho; Karthish Manthiram; Mark Yoshida; Xingchen Ye; A. Paul Alivisatos
We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power of this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.
Journal of the American Chemical Society | 2014
Karthish Manthiram; Yogesh Surendranath; A. Paul Alivisatos
We observe the dendritic assembly of alkanethiol-capped gold nanoparticles on a glassy carbon support during electrochemical reduction of protons and CO2. We find that the primary mechanism by which surfactant-ligated gold nanoparticles lose surface area is by taking a random walk along the support, colliding with their neighbors, and fusing to form dendrites, a type of fractal aggregate. A random walk model reproduces the fractal dimensionality of the dendrites observed experimentally. The rate at which the dendrites form is strongly dependent on the solubility of the surfactant in the electrochemical double layer under the conditions of electrolysis. Since alkanethiolate surfactants reductively desorb at potentials close to the onset of CO2 reduction, they do not poison the catalytic activity of the gold nanoparticles. Although catalyst mobility is typically thought to be limited for room-temperature electrochemistry, our results demonstrate that nanoparticle mobility is significant under conditions at which they electrochemically catalyze gas evolution, even in the presence of a high surface area carbon and binder. A careful understanding of the electrolyte- and polarization-dependent nanoparticle aggregation kinetics informs strategies for maintaining catalyst dispersion during fuel-forming electrocatalysis.
Advanced Materials | 2015
Tracy M. Mattox; Xingchen Ye; Karthish Manthiram; P. James Schuck; A. Paul Alivisatos; Jeffrey J. Urban
The field of plasmonics has grown to impact a diverse set of scientific disciplines ranging from quantum optics and photovoltaics to metamaterials and medicine. Plasmonics research has traditionally focused on noble metals; however, any material with a sufficiently high carrier density can support surface plasmon modes. Recently, researchers have made great gains in the synthetic (both intrinsic and extrinsic) control over the morphology and doping of nanoscale oxides, pnictides, sulfides, and selenides. These synthetic advances have, collectively, blossomed into a new, emerging class of plasmonic metal chalcogenides that complement traditional metallic materials. Chalcogenide and oxide nanostructures expand plasmonic properties into new spectral domains and also provide a rich suite of chemical controls available to manipulate plasmons, such as particle doping, shape, and composition. New opportunities in plasmonic chalcogenide nanomaterials are highlighted in this article, showing how they may be used to fundamentally tune the interaction and localization of electromagnetic fields on semiconductor surfaces in a way that enables new horizons in basic research and energy-relevant applications.
ACS Nano | 2016
Son C. Nguyen; Qiao Zhang; Karthish Manthiram; Xingchen Ye; Justin P. Lomont; Charles B. Harris; Horst Weller; A. Paul Alivisatos
Studying the local solvent surrounding nanoparticles is important to understanding the energy exchange dynamics between the particles and their environment, and there is a need for spectroscopic methods that can dynamically probe the solvent region that is in nearby contact with the nanoparticles. In this work, we demonstrate the use of time-resolved infrared spectroscopy to track changes in a vibrational mode of local water on the time scale of hundreds of picoseconds, revealing the dynamics of heat transfer from gold nanorods to the local water environment. We applied this probe to a prototypical plasmonic photothermal system consisting of organic CTAB bilayer capped gold nanorods, as well as gold nanorods coated with varying thicknesses of inorganic mesoporous-silica. The heat transfer time constant of CTAB capped gold nanorods is about 350 ps and becomes faster with higher laser excitation power, eventually generating bubbles due to superheating in the local solvent. Silica coating of the nanorods slows down the heat transfer and suppresses the formation of superheated bubbles.
Journal of Physical Chemistry Letters | 2015
Daniel J. Hellebusch; Karthish Manthiram; Brandon J. Beberwyck; A. Paul Alivisatos
In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorods long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. We propose a mechanism that accounts for the observed sublimation behavior based on the terrace-ledge-kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation.
Biophysical Chemistry | 2010
Jeanne Bonomo; John P. Welsh; Karthish Manthiram; James R. Swartz
The Hsp70 family of molecular chaperones is an essential class of chaperones that is present in many different cell types and cellular compartments. We have compared the bioactivities of the prokaryotic cytosolic Hsp70, DnaK, to that of the eukaryotic Hsp70, BiP, located in the endoplasmic reticulum (ER). Both chaperones helped to prevent protein aggregation. However, only DnaK provided enhanced refolding of denatured proteins. We also tested chaperone folding assistance during translation in the context of cell-free protein synthesis reactions for several protein targets and show that both DnaK and BiP can provide folding assistance under these conditions. Our results support previous reports suggesting that DnaK provides both post-translational and co-translational folding assistance while BiP predominantly provides folding assistance that is contemporaneous with translation.