Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kasey L. Couts is active.

Publication


Featured researches published by Kasey L. Couts.


Molecular Cell | 2009

Functional Proteomics Identifies Targets of Phosphorylation by B-Raf Signaling in Melanoma

William M. Old; John B. Shabb; Stephane Houel; Hong Wang; Kasey L. Couts; Chia-Yu Yen; Elizabeth S. Litman; Carrie H. Croy; Karen Meyer-Arendt; Jose G. Miranda; Robert Brown; Eric S. Witze; Rebecca E. Schweppe; Katheryn A. Resing; Natalie G. Ahn

Melanoma and other cancers harbor oncogenic mutations in the protein kinase B-Raf, which leads to constitutive activation and dysregulation of MAP kinase signaling. In order to elucidate molecular determinants responsible for B-Raf control of cancer phenotypes, we present a method for phosphoprotein profiling, using negative ionization mass spectrometry to detect phosphopeptides based on their fragment ion signature caused by release of PO(3)(-). The method provides an alternative strategy for phosphoproteomics, circumventing affinity enrichment of phosphopeptides and isotopic labeling of samples. Ninety phosphorylation events were regulated by oncogenic B-Raf signaling, based on their responses to treating melanoma cells with MKK1/2 inhibitor. Regulated phosphoproteins included known signaling effectors and cytoskeletal regulators. We investigated MINERVA/FAM129B, a target belonging to a protein family with unknown category and function, and established the importance of this protein and its MAP kinase-dependent phosphorylation in controlling melanoma cell invasion into three-dimensional collagen matrix.


Oncogene | 2009

Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells.

Gretchen M. Argast; Carrie H. Croy; Kasey L. Couts; Zhiyong Zhang; Elizabeth S. Litman; Daniel C. Chan; Natalie G. Ahn

Human melanomas show oncogenic B-Raf mutations, which activate the B-Raf/MKK/ERK cascade. We screened microarrays to identify cellular targets of this pathway, and found that genes upregulated by B-Raf/MKK/ERK showed highest association with cell-cycle regulators, whereas genes downregulated were most highly associated with axon guidance genes, including plexin–semaphorin family members. Plexin B1 was strongly inhibited by mitogen-activated protein kinase signaling in melanoma cells and melanocytes. In primary melanoma cells, plexin B1 blocked tumorigenesis as measured by growth of colonies in soft agar, spheroids in extracellular matrix and xenograft tumors. Tumor suppression depended on residues in the C-terminal domain of plexin B1, which mediate receptor GTPase activating protein activity, and also correlated with AKT inhibition. Interestingly, the inhibitory response to plexin B1 was reduced or absent in cells from a matched metastatic tumor, suggesting that changes occur in metastatic cells which bypass the tumor-suppressor mechanisms. Plexin B1 also inhibited cell migration, but this was seen in metastatic cells and not in matched primary cells. Thus, plexin B1 has tumor-suppressor function in early-stage cells, although suppressing migration in late-stage cells. Our findings suggest that B-Raf/MKK/ERK provides a permissive environment for melanoma genesis by modulating plexin B1.


Oncogene | 2013

Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions

Kasey L. Couts; E M Anderson; M M Gross; K A Sullivan; Natalie G. Ahn

Over two-thirds of melanomas have activating mutations in B-Raf, leading to constitutive activation of the B-Raf/MKK/ERK signaling pathway. The most prevalent mutation, B-RafV600E, promotes cancer cell behavior through mechanisms that are still incompletely defined. Here, we used a sensitive microarray profiling platform to compare microRNA (miRNA) expression levels between primary melanocytes and B-RafV600E-positive melanoma cell lines, and between melanoma cells treated in the presence and absence of an MKK1/2 inhibitor. We identified a network of >20 miRNAs deregulated by B-Raf/MKK/ERK in melanoma cells, the majority of which modulate the expression of key cancer regulatory genes and functions. Importantly, miRNAs within the network converge on protein regulation and cancer phenotypes, suggesting that these miRNAs might function combinatorially. We show that miRNAs augment effects on protein repression and cell invasion when co-expressed, and gene-specific latency and interference effects between miRNAs were also observed. Thus, B-Raf/MKK/ERK controls key aspects of cancer cell behavior and gene expression by modulating a network of miRNAs with cross-regulatory functions. The findings highlight the potential for complex interactions between coordinately regulated miRNAs within a network.


Pigment Cell & Melanoma Research | 2017

Kinase Gene Fusions in Defined Subsets of Melanoma.

Jacqueline A. Turner; Kasey L. Couts; Jamie Sheren; Siriwimon Saichaemchan; Witthawat Ariyawutyakorn; Izabela Avolio; Ethan Cabral; Magdelena Glogowska; Carol M. Amato; Steven E. Robinson; Jennifer Hintzsche; Allison Applegate; Eric Seelenfreund; Rita T Gonzalez; Keith Ryan Wells; Stacey Bagby; John J. Tentler; Aik Choon Tan; Joshua Wisell; Marileila Varella-Garcia; William H. Robinson

Genomic rearrangements resulting in activating kinase fusions have been increasingly described in a number of cancers including malignant melanoma, but their frequency in specific melanoma subtypes has not been reported. We used break‐apart fluorescence in situ hybridization (FISH) to identify genomic rearrangements in tissues from 59 patients with various types of malignant melanoma including acral lentiginous, mucosal, superficial spreading, and nodular. We identified four genomic rearrangements involving the genes BRAF, RET, and ROS1. Of these, three were confirmed by Immunohistochemistry (IHC) or sequencing and one was found to be an ARMC10‐BRAF fusion that has not been previously reported in melanoma. These fusions occurred in different subtypes of melanoma but all in tumors lacking known driver mutations. Our data suggest gene fusions are more common than previously thought and should be further explored particularly in melanomas lacking known driver mutations.


Melanoma Research | 2017

Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma

Jennifer D. Hintzsche; Nicholas T. Gorden; Carol M. Amato; Jihye Kim; Kelsey E. Wuensch; Steven E. Robinson; Allison Applegate; Kasey L. Couts; Theresa M. Medina; Keith Ryan Wells; Joshua Wisell; Martin D. McCarter; Neil F. Box; Yiqun G. Shellman; Rene Gonzalez; Karl D. Lewis; John J. Tentler; Aik Choon Tan; William A. Robinson

Mucosal melanomas are a rare subtype of melanoma, arising in mucosal tissues, which have a very poor prognosis due to the lack of effective targeted therapies. This study aimed to better understand the molecular landscape of these cancers and find potential new therapeutic targets. Whole-exome sequencing was performed on mucosal melanomas from 19 patients and 135 sun-exposed cutaneous melanomas, with matched peripheral blood samples when available. Mutational profiles were compared between mucosal subgroups and sun-exposed cutaneous melanomas. Comparisons of molecular profiles identified 161 genes enriched in mucosal melanoma (P<0.05). KIT and NF1 were frequently comutated (32%) in the mucosal subgroup, with a significantly higher incidence than that in cutaneous melanoma (4%). Recurrent SF3B1 R625H/S/C mutations were identified and validated in 7 of 19 (37%) mucosal melanoma patients. Mutations in the spliceosome pathway were found to be enriched in mucosal melanomas when compared with cutaneous melanomas. Alternative splicing in four genes were observed in SF3B1-mutant samples compared with the wild-type samples. This study identified potential new therapeutic targets for mucosal melanoma, including comutation of NF1 and KIT, and recurrent R625 mutations in SF3B1. This is the first report of SF3B1 R625 mutations in vulvovaginal mucosal melanoma, with the largest whole-exome sequencing project of mucosal melanomas to date. The results here also indicated that the mutations in SF3B1 lead to alternative splicing in multiple genes. These findings expand our knowledge of this rare disease.


Molecular Cancer Therapeutics | 2018

ALK inhibitor response in melanomas expressing EML4-ALK fusions and alternate ALK isoforms

Kasey L. Couts; Judson Bemis; Jacqueline A. Turner; Stacey Bagby; Danielle Murphy; Jason Christiansen; Jennifer Hintzsche; Anh T. Le; Todd M. Pitts; Keith Ryan Wells; Allison Applegate; Carol M. Amato; Pratik S. Multani; Edna Chow-Maneval; John J. Tentler; Yiqun G. Shellman; Matthew J. Rioth; Aik Choon Tan; Rene Gonzalez; Theresa M. Medina; Robert C. Doebele; William A. Robinson

Oncogenic ALK fusions occur in several types of cancer and can be effectively treated with ALK inhibitors; however, ALK fusions and treatment response have not been characterized in malignant melanomas. Recently, a novel isoform of ALK (ALKATI) was reported in 11% of melanomas but the response of melanomas expressing ALKATI to ALK inhibition has not been well characterized. We analyzed 45 melanoma patient-derived xenograft models for ALK mRNA and protein expression. ALK expression was identified in 11 of 45 (24.4%) melanomas. Ten melanomas express wild-type (wt) ALK and/or ALKATI and one mucosal melanoma expresses multiple novel EML4-ALK fusion variants. Melanoma cells expressing different ALK variants were tested for response to ALK inhibitors. Whereas the melanoma expressing EML4-ALK were sensitive to ALK inhibitors in vitro and in vivo, the melanomas expressing wt ALK or ALKATI were not sensitive to ALK inhibitors. In addition, a patient with mucosal melanoma expressing ALKATI was treated with an ALK/ROS1/TRK inhibitor (entrectinib) on a phase I trial but did not respond. Our results demonstrate ALK fusions occur in malignant melanomas and respond to targeted therapy, whereas melanomas expressing ALKATI do not respond to ALK inhibitors. Targeting ALK fusions is an effective therapeutic option for a subset of melanoma patients, but additional clinical studies are needed to determine the efficacy of targeted therapies in melanomas expressing wt ALK or ALKATI. Mol Cancer Ther; 17(1); 222–31. ©2017 AACR.


Molecular & Cellular Proteomics | 2015

Dosage and Temporal Thresholds in microRNA Proteomics

Thomas Lee; Nan Wang; Stephane Houel; Kasey L. Couts; William M. Old; Natalie G. Ahn

MicroRNAs (miRNAs) modulate protein and mRNA expression through translational repression and/or mRNA decay. In this study, we combined SILAC-based proteomics and RNAseq to identify primary targets based on measurements of protein and mRNA repression and analysis of transcript 3′UTR sequences. The primary target set was used to compare different prediction algorithms, revealing higher stringency of selection by Targetscan and PITA compared with miRanda, at the expense of higher false negatives. A key finding was that significant and unexpected variations occurred in the kinetics of repression as well as the sensitivity to exogeneous miRNA concentration. Bimodal thresholds were observed, which distinguished responses to low (10 nm) versus high (50–100 nm) miRNA, as well as the onset of repression at early (12–18 h) versus late (36–48 h) times. Similar behavior was seen at the transcript level with respect to kinetics of repression. The differential thresholds were most strongly correlated with ΔΔG, the net free energy of miRNA-target interactions, which mainly reflected inverse correlations with ΔGopen, the free energy of forming 3′UTR secondary structures, at or nearby the miRNA seed matching sites. Thus, our working model is that protein binding or other competitive mechanisms variably interfere with the accessibility of miRISC to the transcript binding site. In addition, biphasic responses were observed in a subset of proteins that were partially down-regulated at early times, and further down-regulated at later times. Taken together, our findings provide evidence for varying modes of miRNA target repression, which lead to different thresholds of target responses with respect to kinetics and concentration, and predict that certain transcripts will show graded responses in sensitivity and fold-change under cellular conditions that lead to varying steady state miRNA levels.


JCO Precision Oncology | 2017

Acral Lentiginous Melanoma Harboring a ROS1 Gene Fusion With Clinical Response to Entrectinib

Kasey L. Couts; Caroline E. McCoach; Danielle Murphy; Jason Christiansen; Jacqueline A. Turner; Karl D. Lewis; William A. Robinson; Robert C. Doebele

PurposeROS1 gene fusions demonstrate oncogenic activity, and patients with non–small-cell lung cancer (NSCLC) harboring a ROS1 fusion benefit from the use of a ROS1 inhibitor; however, clinical response to ROS1 inhibitors remains largely uncharacterized outside of NSCLC. ROS1 fusions have been identified in multiple tumor types but have not been reported in cutaneous melanoma.Patients and MethodsTumors from 22 patients with acral lentiginous melanoma (ALM) were analyzed with targeted RNA sequencing to detect fusions in ROS1, NTRK1, NTRK2, NTRK3, and ALK genes. A patient harboring a ROS1 fusion was enrolled in a phase I basket trial of a ROS1/TRK/ALK inhibitor (entrectinib). An additional 78 tumors with different subtypes of melanoma were screened by ROS1 immunohistochemistry.ResultsTargeted sequencing identified a GOPC-ROS1 fusion in a patient with ALM. The patient underwent a dramatic and durable response to entrectinib, with a RECIST (version 1.1) partial response of −38% at 3 months and −55% at 11 mont...


Oncogene | 2018

BRAF fusions identified in melanomas have variable treatment responses and phenotypes

Jacqueline A. Turner; Judson Bemis; Stacey Bagby; Anna Capasso; Betelehem Yacob; Tugs-Saikhan Chimed; Robert Van Gulick; Hannah Lee; Richard P. Tobin; John J. Tentler; Todd M. Pitts; Martin D. McCarter; William A. Robinson; Kasey L. Couts

Oncogenic BRAF fusions have emerged as an alternate mechanism for BRAF activation in melanomas and other cancers. A number of BRAF fusions with different 5′ gene partners and BRAF exon breakpoints have been described, but the effects of different partners and breakpoints on cancer phenotypes and treatment responses has not been well characterized. Targeted RNA sequencing was used to screen 60 melanoma patient-derived xenograft (PDX) models for BRAF fusions. We identified three unique BRAF fusions, including a novel SEPT3-BRAF fusion, occurring in four tumors (4/60, 6.7%), all of which were “pan-negative” (lacking other common mutations) (4/18, 22.2%). The BRAF fusion PDX models showed variable growth rates and responses to MAPK inhibitors in vivo. Overexpression of BRAF fusions identified in our study, as well as other BRAF fusions previously identified in melanomas, resulted in a high degree of variability in 2D proliferation and 3D invasion between the different fusions. While exogenously expressed BRAF fusions all responded to MAPK inhibition in vitro, we observed potential differences in signaling and feedback mechanisms. In summary, BRAF fusions are actionable therapeutic targets, however there are significant differences in phenotypes, treatment responses, and signaling which may be clinically relevant.


Cell Death and Disease | 2018

BH3 mimetics induce apoptosis independent of DRP-1 in melanoma

Nabanita Mukherjee; Andrew Strosnider; Bay Vagher; Karoline Lambert; Sarah Slaven; William A. Robinson; Carol M. Amato; Kasey L. Couts; Judson Bemis; Jacqueline A. Turner; David A. Norris; Yiqun G. Shellman

Despite the recent advancement in treating melanoma, options are still limited for patients without BRAF mutations or in relapse from current treatments. BH3 mimetics against members of the BCL-2 family have gained excitement with the recent success in hematological malignancies. However, single drug BH3 mimetic therapy in melanoma has limited effectiveness due to escape by the anti-apoptotic protein MCL-1 and/or survival of melanoma-initiating cells (MICs). We tested the efficacy of the BH3 mimetic combination of A-1210477 (an MCL-1 inhibitor) and ABT-263 (a BCL-2/BCL-XL/BCL-W inhibitor) in killing melanoma, especially MICs. We also sought to better define Dynamin-Related Protein 1 (DRP-1)’s role in melanoma; DRP-1 is known to interact with members of the BCL-2 family and is a possible therapeutic target for melanoma treatment. We used multiple assays (cell viability, apoptosis, bright field, immunoblot, and sphere formation), as well as the CRISPR/Cas9 genome-editing techniques. For clinical relevance, we employed patient samples of different mutation status, including some relapsed from current treatments such as anti-PD-1 immunotherapy. We found the BH3 mimetic combination kill both the MICs and non-MICs (bulk of melanoma) in all cell lines and patient samples irrespective of the mutation status or relapsed state (p < 0.05). Unexpectedly, the major pro-apoptotic proteins, NOXA and BIM, are not necessary for the combination-induced cell death. Furthermore, the combination impedes the activation of DRP-1, and inhibition of DRP-1 further enhances apoptosis (p < 0.05). DRP-1 effects in melanoma differ from those seen in other cancer cells. These results provide new insights into BCL-2 family’s regulation of the apoptotic pathway in melanoma, and suggest that inhibiting the major anti-apoptotic proteins is sufficient to induce cell death even without involvement from major pro-apoptotic proteins. Importantly, our study also indicates that DRP-1 inhibition is a promising adjuvant for BH3 mimetics in melanoma treatment.

Collaboration


Dive into the Kasey L. Couts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie G. Ahn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Allison Applegate

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Carol M. Amato

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Ryan Wells

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judson Bemis

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Stacey Bagby

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge