Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kashappa Goud H. Desai is active.

Publication


Featured researches published by Kashappa Goud H. Desai.


Angewandte Chemie | 2012

Self‐Healing Microencapsulation of Biomacromolecules without Organic Solvents

Samuel E. Reinhold; Kashappa Goud H. Desai; Li Zhang; Karl F. Olsen; Steven P. Schwendeman

Microencapsulation of biomacromolecules in PLGA is routinely performed with organic solvent through multiple complex steps deleterious to the biomacromolecule. The new self-healing based PLGA microencapsulation obviates micronization- and organic solvent-induced protein damage, provides very high encapsulation efficiency, exhibit stabilization and slow release of labile tetanus protein antigen, and provides long-term testosterone suppression in rats following a single injection of encapsulated leuprolide.


Drying Technology | 2006

Drug Release Kinetics of Spray-Dried Chitosan Microspheres

Cheng Sheng Liu; Kashappa Goud H. Desai; Xuexi Tang; Xi Guang Chen

The aim of this article was to investigate the drug release kinetics of spray-dried chitosan microspheres using various kinetic models. The mean particle size and encapsulation efficiency of cross-linked chitosan microspheres was between 3.8 and 4.2 μm and 96.3 and 98.7%, respectively. Spray-dried chitosan microspheres were spherical in shape with smooth surface. The surface morphology of spray-dried chitosan microspheres was affected by the crystallinity of the loaded drug and cross-linking agent. The release data of the spray-dried chitosan microspheres were treated with zero-order, first-order, Higuchi, Korsmeyer, and Kopcha kinetic models and best fit was observed with Higuchi model, indicating the release of drug from spray-dried chitosan microspheres followed Ficks law of diffusion.


European Journal of Pharmaceutics and Biopharmaceutics | 2008

Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(dl-lactide-co-glycolide) implants

Kashappa Goud H. Desai; Susan R. Mallery; Steven P. Schwendeman

The objective of this study was to investigate the potential of various formulation strategies to achieve 1-month continuous (improved) release of the novel anti-cancer drug, 2-methoxyestradiol (2-ME), from injectable cylindrical poly(DL-lactide-co-glycolide) (PLGA) implants. PLGA implants were prepared by a solvent extrusion method. PLGA 50:50 (M(w)=51 kDa, end group=lauryl ester) (PLGA-lauryl ester) implants loaded with 3-30 wt% 2-ME exhibited a pronounced lag phase (i.e., corresponding to induction time to polymer mass loss) and triphasic release profile. Incorporation of 5 wt% hydroxypropyl-beta-cyclodextrin (HP-beta-CD) (approximately 57% release after 28 days) or Pluronic F127 (approximately 42% release after 28 days) in PLGA-lauryl ester implants reduced the lag-phase and improved the drug release moderately over a period of 28 days. The formation and the incorporation of a 2-ME/polyethylene glycol (PEG) 8000 solid dispersion in PLGA-lauryl ester implants further increased drug release (approximately 21% and 73% release after 1 and 28 days, respectively), attributable to improved drug solubility/dissolution, higher matrix porosity, and accelerated polymer degradation. Blending of PLGA 50:50 (M(w)=24 kDa, end group=COOH) (PLGA-COOH) with the PLGA-lauryl ester also provided moderate enhancement of 2-ME release over a period of 28 days. PLGA-COOH (M(w)=24 kDa) implants with 3-5% w/w pore-forming MgCO(3) exhibited the most desirable drug release among all the formulations tested, and, demonstrated 1-month slow and continuous in vitro release of approximately 80% 2-ME after a minimal initial burst. Hence, these formulation approaches provide several possible avenues to improve release rates of the hydrophobic drug, 2-ME, from PLGA for future application in regional anti-cancer therapy.


Journal of Controlled Release | 2013

The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides.

Andreas M. Sophocleous; Kashappa Goud H. Desai; J. Maxwell Mazzara; Ling Tong; Ji-Xin Cheng; Karl F. Olsen; Steven P. Schwendeman

An important poorly understood phenomenon in controlled-release depots involves the strong interaction between common cationic peptides and low Mw free acid end-group poly(lactic-co-glycolic acids) (PLGAs) used to achieve continuous peptide release kinetics. The kinetics of peptide sorption to PLGA was examined by incubating peptide solutions of 0.2-4mM octreotide or leuprolide acetate salts in a 0.1M HEPES buffer, pH7.4, with polymer particles or films at 4-37°C for 24h. The extent of absorption/loading of peptides in PLGA particles/films was assayed by two-phase extraction and amino acid analysis. Confocal Raman microspectroscopy, stimulated Raman scattering (SRS) and laser scanning confocal imaging, and microtome sectioning techniques were used to examine peptide penetration into the polymer phase. The release of sorbed peptide from leuprolide-PLGA particles was evaluated both in vitro (PBST+0.02% sodium azide, 37°C) and in vivo (male Sprague-Dawley rats). We found that when the PLGA-COOH chains are sufficiently mobilized, therapeutic peptides not only bind at the surface, a common belief to date, but also can be internalized and distributed throughout the polymer phase at physiological temperature forming a salt with low-molecular weight PLGA-COOH. Importantly, absorption of leuprolide into low MW PLGA-COOH particles yielded ~17 wt.% leuprolide loading in the polymer (i.e., ~70% of PLGA-COOH acids occupied), and the absorbed peptide was released from the polymer for >2 weeks in a controlled fashion in vitro and as indicated by sustained testosterone suppression in male Sprague-Dawley rats. This new approach, which bypasses the traditional encapsulation method and associated production cost, opens up the potential for facile production of low-cost controlled-release injectable depots for leuprolide and related peptides.


Drying Technology | 2007

Sweet Potato Starch Microparticles as Controlled Drug Release Carriers: Preparation and In Vitro Drug Release

Cheng Sheng Liu; Kashappa Goud H. Desai; Xianghong Meng; Xi Guang Chen

The aim of this study was to investigate the in vitro drug release behavior of sweet potato starch (SPS) microparticles intended for controlled drug delivery applications. Diclofenac sodium (DS) was used as a model drug candidate in the present study. SPS microparticles were prepared using a spray-drying technique by varying the polymer concentration and drug loading. The mean particles size of drug-loaded spray-dried SPS microparticles was between 10.3 and 13.1 µm. The mean particle size increased slightly with increase in the concentration of SPS. The mean particle size of spray-dried SPS microparticles increased from 10.3 to 13.1 µm when the concentration of SPS increased from 2 to 4% w/v. Under the current spray-drying conditions, the percentage yield of spray-dried SPS microparticles did not vary much among the various formulations and it was between 65.2 and 70.1%. The encapsulation efficiencies of SPS microparticles formulations was between 95.1–98.2%, suggesting good encapsulating ability of the SPS polymer by spary drying. Drug release from all the formulations of spray-dried SPS microparticles was controlled over period of 6 h. The cumulative amount of drug release from the spray-dried SPS microparticles decreased with an increase in the concentration of SPS, while it increases as the drug loading is increased. Release of the drug from spray-dried SPS microparticles followed Ficks law of diffusion since a good correlation coefficient (R2) was observed with the Higuchi plots (R2 = 0.9928 to 0.9979).


Molecular Pharmaceutics | 2015

Feasibility Investigation of Cellulose Polymers for Mucoadhesive Nasal Drug Delivery Applications.

Kellisa Hansen; Gwangseong Kim; Kashappa Goud H. Desai; Hiren Patel; Karl F. Olsen; Jaime L. Curtis-Fisk; Elizabeth Tocce; Susan Jordan; Steven P. Schwendeman

The feasibility of various cellulose polymer derivatives, including methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), sodium-carboxymethylcellulose (sodium-CMC), and cationic-hydroxyethylcellulose (cationic-HEC), for use as an excipient to enhance drug delivery in nasal spray formulations was investigated. Three main parameters for evaluating the polymers in nasal drug delivery applications include rheology, ciliary beat frequency (CBF), and permeation across nasal tissue. Reversible thermally induced viscosity enhancement was observed at near nasal physiological temperature when cellulose derivatives were combined with an additional excipient, poly(vinyl caprolactam)-poly(vinyl acetate)-poly(ethylene glycol) graft copolymer (PVCL-PVA-PEG). Cationic-HEC was shown to enhance acyclovir permeation across the nasal mucosa. None of the tested cellulosic polymers caused any adverse effects on porcine nasal tissues and cells, as assessed by alterations in CBF. Upon an increase in polymer concentration, a reduction in CBF was observed when ciliated cells were immersed in the polymer solution, and this decrease returned to baseline when the polymer was removed. While each cellulose derivative exhibited unique advantages for nasal drug delivery applications, none stood out on their own to improve more than one of the performance characteristics examined. Hence, these data may be useful for the development of new cellulose derivatives in nasal drug formulations.


Molecular Pharmaceutics | 2012

Mucoadhesive fenretinide patches for site-specific chemoprevention of oral cancer: enhancement of oral mucosal permeation of fenretinide by coincorporation of propylene glycol and menthol.

Xiao Wu; Kashappa Goud H. Desai; Susan R. Mallery; Andrew S. Holpuch; Maynard P. Phelps; Steven P. Schwendeman

The objective of this study was to enhance oral mucosal permeation of fenretinide by coincorporation of propylene glycol (PG) and menthol in fenretinide/Eudragit RL PO mucoadhesive patches. Fenretinide is an extremely hydrophobic chemopreventive compound with poor tissue permeability. Coincorporation of 5-10 wt % PG (mean J(s) = 16-23 μg cm⁻² h⁻¹; 158-171 μg of fenretinide/g of tissue) or 1-10 wt % PG + 5 wt % menthol (mean J(s) = 18-40 μg cm⁻² h⁻¹; 172-241 μg of fenretinide/g of tissue) in fenretinide/Eudragit RL PO patches led to significant ex vivo fenretinide permeation enhancement (p < 0.001). Addition of PG above 2.5 wt % in the patch resulted in significant cellular swelling in the buccal mucosal tissues. These alterations were ameliorated by combining both enhancers and reducing PG level. After buccal administration of patches in rabbits, in vivo permeation of fenretinide across the oral mucosa was greater (∼43 μg fenretinide/g tissue) from patches that contained optimized permeation enhancer content (2.5 wt % PG + 5 wt % menthol) relative to permeation obtained from enhancer-free patch (∼17 μg fenretinide/g tissue) (p < 0.001). In vitro and in vivo release of fenretinide from patch was not significantly increased by coincorporation of permeation enhancers, indicating that mass transfer across the tissue, and not the patch, largely determined the permeation rate control in vivo. As a result of its improved permeation and its lack of deleterious local effects, the mucoadhesive fenretinide patch coincorporated with 2.5 wt % PG + 5 wt % menthol represents an important step in the further preclinical evaluation of oral site-specific chemoprevention strategies with fenretinide.


Carcinogenesis | 2012

Evaluation of a mucoadhesive fenretinide patch for local intraoral delivery: a strategy to reintroduce fenretinide for oral cancer chemoprevention

Andrew S. Holpuch; Maynard P. Phelps; Kashappa Goud H. Desai; Wei Chen; George Koutras; Byungdo B. Han; Blake M. Warner; Ping Pei; Garrett A. Seghi; Meng Tong; Michael B. Border; Henry W. Fields; Gary D. Stoner; Peter E. Larsen; Zhongfa Liu; Steven P. Schwendeman; Susan R. Mallery

Systemic delivery of fenretinide in oral cancer chemoprevention trials has been largely unsuccessful due to dose-limiting toxicities and subtherapeutic intraoral drug levels. Local drug delivery, however, provides site-specific therapeutically relevant levels while minimizing systemic exposure. These studies evaluated the pharmacokinetic and growth-modulatory parameters of fenretinide mucoadhesive patch application on rabbit buccal mucosa. Fenretinide and blank-control patches were placed on right/left buccal mucosa, respectively, in eight rabbits (30 min, q.d., 10 days). No clinical or histological deleterious effects occurred. LC-MS/MS analyses of post-treatment samples revealed a delivery gradient with highest fenretinide levels achieved at the patch-mucosal interface (no metabolites), pharmacologically active levels in fenretinide-treated oral mucosa (mean: 5.65 μM; trace amounts of 4-oxo-4-HPR) and undetectable sera levels. Epithelial markers for cell proliferation (Ki-67), terminal differentiation (transglutaminase 1-TGase1) and glucuronidation (UDP-glucuronosyltransferase1A1-UGT1A1) exhibited fenretinide concentration-specific relationships (elevated TGase1 and UGT1A1 levels <5 μM, reduced Ki-67 indices >5 μM) relative to blank-treated epithelium. All fenretinide-treated tissues showed significantly increased intraepithelial apoptosis (TUNEL) positivity, implying activation of intersecting apoptotic and differentiation pathways. Human oral mucosal correlative studies showed substantial interdonor variations in levels of the enzyme (cytochrome P450 3A4-CYP3A4) responsible for conversion of fenretinide to its highly active metabolite, 4-oxo-4-HPR. Complementary in vitro assays in human oral keratinocytes revealed fenretinide and 4-oxo-4-HPRs preferential suppression of DNA synthesis in dysplastic as opposed to normal oral keratinocytes. Collectively, these data showed that mucoadhesive patch-mediated fenretinide delivery is a viable strategy to reintroduce a compound known to induce keratinocyte differentiation to human oral cancer chemoprevention trials.


Molecular Pharmaceutics | 2017

Self-encapsulating Poly(lactic-co-glycolic acid) (PLGA) Microspheres for Intranasal Vaccine Delivery

Brittany A. Bailey; Kashappa Goud H. Desai; Lukasz J. Ochyl; Susan Ciotti; James J. Moon; Steven P. Schwendeman

Herein we describe a formulation of self-encapsulating poly(lactic-co-glycolic acid) (PLGA) microspheres for vaccine delivery. Self-healing encapsulation is a novel encapsulation method developed by our group that enables the aqueous loading of large molecules into premade PLGA microspheres. Calcium phosphate (CaHPO4) adjuvant gel was incorporated into the microspheres as a protein-trapping agent for improved encapsulation of antigen. Microspheres were found to have a median size of 7.05 ± 0.31 μm, with a w/w loading of 0.60 ± 0.05% of ovalbumin (OVA) model antigen. The formulation demonstrated continuous release of OVA over a 49-day period. Released OVA maintained its antigenicity over the measured period of >21 days of release. C57BL/6 mice were immunized via the intranasal route with prime and booster doses of OVA (10 μg) loaded into microspheres or coadministered with cholera toxin B (CTB), the gold standard of mucosal adjuvants. Microspheres generated a Th2-type response in both serum and local mucosa, with IgG antibody responses approaching those generated by CTB. The results suggest that this formulation of self-encapsulating microspheres shows promise for further study as a vaccine delivery system.


Pharmaceutical Research | 2011

Development and in vitro-in vivo evaluation of fenretinide-loaded oral mucoadhesive patches for site-specific chemoprevention of oral cancer.

Kashappa Goud H. Desai; Susan R. Mallery; Andrew S. Holpuch; Steven P. Schwendeman

Collaboration


Dive into the Kashappa Goud H. Desai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary D. Stoner

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Sheng Liu

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar

Xi Guang Chen

Ocean University of China

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge