Kasper Reitzel
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kasper Reitzel.
Environmental Science & Technology | 2010
Sara Egemose; Kasper Reitzel; Frede Østergaard Andersen; Mogens Flindt
Laboratory experiments with sediments from three shallow Danish lakes were conducted to evaluate the effects of chemical lake restoration products during resuspension. Phosphorus (P) removal, sediment stability, sediment consolidation and color reduction were studied over time. The investigated products were aluminum (Al), Phoslock (a commercial bentonite product coated with lanthanum) and a combination of Al covered with bentonite (Al/Ben). All treatments effectively reduced the P concentration in the water. However, the treatments containing Al reduced the P concentration immediately after resuspension, whereas Phoslock required several days after resuspension to reduce the P concentration. Especially Phoslock, but also Al/Ben, increased the sediment stability threshold by 265% and 101%, respectively, whereas Al had no stabilizing effect. The fresh Al floc was resuspended 5x easier than untreated sediment. The largest consolidation of the sediment occurred with addition of Phoslock, followed by Al/Ben, while Al alone had no effect. Enhanced consolidation may be of importance for macrophyte colonisation of organic sediment. Phoslock improved the light climate moderately by removing color, whereas Al was very effective in removing color. Ben/Al showed intermediate effects on color reduction. These findings are important when decisions are made on restoration method for a specific lake, which may be more or less wind exposed.
Hydrobiologia | 2003
Jonas Hansen; Kasper Reitzel; Henning S. Jensen; Frede Østergaard Andersen
The effects of oxygen, aluminum, iron and nitrate additions on phosphate release from the sediment were evaluated in the softwater Lake Vedsted, Denmark, by a 34-day experiment with undisturbed sediment cores. Six treatments were applied: (1) Control - O2 (0–20% saturation), (2) O2 (100% saturation) (3) Al3+ – O2, (4) Fe3+ + O2, (5) Fe3+ – O2, and (6) NO3− – O2. Al2(SO4)3*18 H2O and FeCl3*4H2O were added in amounts that theoretically should immobilize the exchangeable P-pool in the top 5 cm of the sediment, while sodium nitrate concentrations were increased to 5 mg N l−1. The four treatments with metals or NO3− reduced the P efflux from the sediment significantly as compared to the suboxic control treatment. Mean accumulated P-release rates for suboxic treatments with Al3+, Fe3+, and NO3− were: –0.27 mmol m−2 (st. dev = 0.02 mmol m−2, N = 5), 0.58 mmol m−2 (st. dev = 0.30 mmol m−2, N = 5) and 1.40 mmol m−2 (st. dev = 0.14 mmol m−2, N = 5), respectively. The oxic treatment with Fe3+ had a P efflux of 0.36 mmol m−2 (st. dev = 0.08 mmol m−2, N = 5). The two highest P-release rates were observed in the control treatment and the treatment with O2 (14.50 mmol m−2 (st. dev = 3.90 mmol m−2, N = 5) and 2.31 mmol m−2 (st. dev = 0.80 mmol m−2, N = 5), respectively). In order to identify changes in the P and Fe binding sites in the sediment as caused by the treatments, a sequential P extraction procedure was applied on the sediment before and after the efflux experiment. Addition of O2, Fe3+ and NO3− to the sediment increased the amounts of oxidized Fe3+ and P→BD. Al3+ addition resulted in a lower fraction of P→BD but a correspondingly higher fraction of Al-bound P. Addition of Al3+ decreased the Fe-efflux from the suboxic sediment as well as the amount of oxidized Fe3+ in the sediment. This questions the use of Al compounds that contain sulfate because of the possible formation of FeS, which will restrict upward migration of Fe2+ and the formation of new Fe-oxides in the surface sediment. Instead, we suggest the use of AlCl3 for lake restoration purposes.
Water Research | 2013
Kasper Reitzel; Frede Østergaard Andersen; Sara Egemose; Henning S. Jensen
Effects of pH, alkalinity and conductivity on the adsorption of soluble reactive phosphorus (SRP) onto lanthanum (La) modified bentonite clay (Phoslock(®)) were investigated in laboratory experiments using eight different types of filtered water representing freshwater with low and normal alkalinity and brackish water with high alkalinity. Different dose ratios (0-200; w/w) of Phoslock(®):P were applied to determine the maximum P binding capacity of Phoslock(®) at SRP concentrations typical of those of sediment pore water. The 100:1 Phoslock(®:)P dose ratio, recommended by the manufacturer, was tested with 12 days exposure time and generally found to be insufficient at binding whole target SRP pool. The ratio performed best in the soft water from Danish Lake Hampen and less good in the hard water from Danish Lake Langesø and in brackish water. The explanation may be an observed negative relationship between alkalinity and the SRP binding capacity of Phoslock(®). A comparative study of Lake Hampen and Lake Langesø suggested that the recorded differences in P adsorption between the two lakes could be attributed to a more pronounced dispersion of Phoslock(®) in the soft water of Lake Hampen, leading to higher fractions of dissolved (<0.2 μm) La and of La in fine particles. In the same two lakes, pH affected the SRP binding of Phoslock(®) negatively at a pH level above 8.1, the effect being reversible, however. The negative pH effect was most significant in hard water Lake Langesø, most likely because of higher [Formula: see text] concentrations.
Canadian Journal of Fisheries and Aquatic Sciences | 2006
Kasper Reitzel; Joakim Ahlgren; Adolf Gogoll; Henning S. Jensen; Emil Rydin
Phosphorus (P) compounds in three different lake surface sediments were extracted by sequential P extraction and identified by P-31 nuclear magnetic resonance (P-31 NMR) spectroscopy. The extractio ...
Water Research | 2016
Diego Copetti; Karin Finsterle; Laura Marziali; Fabrizio Stefani; Gianni Tartari; Grant Douglas; Kasper Reitzel; Bryan M. Spears; Ian J. Winfield; Giuseppe Crosa; Patrick C. D'Haese; Said Yasseri; Miquel Lürling
This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB in saline waters need a careful risk evaluation due to potential lanthanum release.
Journal of Environmental Monitoring | 2011
Charlotte Jørgensen; Henning S. Jensen; Frede Østergaard Andersen; Sara Egemose; Kasper Reitzel
Orthophosphate monoesters often constitute a significant fraction of total phosphorus in lake sediments. The knowledge on the specific composition and recalcitrance of these compounds is however limited. The main aim was therefore to identify and quantify specific orthophosphate monoesters in sediment from 15 Danish lakes by solution (31)P NMR spectroscopy. The four most quantitatively important orthophosphate monoesters were myo-inositol hexakisphosphate (myo-IP(6)), scyllo-inositol hexakisphosphate (scyllo-IP(6)) α-glycerophosphate (α-GP) and β-glycerophosphate (β-GP). The compounds were identified in 9, 4, 8 and in all 15 lakes, respectively. In total these four components made up 46-100% of the orthophosphate monoester pool. The glycerophosphates (GPs) are most likely degradation products of phospholipids, created as an artifact by the alkaline extraction procedure used for (31)P NMR spectroscopy, while the inositol hexakisphosphates (IPs) are naturally occurring compounds. There was a significant positive correlation between myo-IP(6) and total aluminium in the sediment and a negative correlation between myo-IP(6) and lake water pH, suggesting that myo-IP(6) is stabilized in the sediment by adsorption at slightly acidic or neutral conditions. In three lakes, the depth distribution of the orthophosphate monoesters was investigated. The content of scyllo-IP(6) and myo-IP(6) was constant with sediment depth in two of the lakes while the content of myo-IP(6) decreased with depth in one of the lakes. In all cases the IPs seem to be preserved with sediment depth to a higher extent than the orthophosphate diesters and especially the GPs suggesting that IPs can be a sink for phosphorus in the lake ecosystem or at least delay P-recycling for years.
Water Research | 2011
Joakim Ahlgren; Kasper Reitzel; H. De Brabandere; Adolf Gogoll; Emil Rydin
The effects of different physical and chemical conditions on the decomposition and release of organic and inorganic P compound groups from the sediment of Lake Erken were investigated in a series of laboratory experiments. Conditions investigated were temperature, oxygen level, and the effects of additions of carbon substrate (glucose) and poison (formalin). The effects on the P compound groups were determined by measurements with (31)P NMR before and after the experiments, as well as analysis of P in effluent water throughout the experiment. Phosphate analysis of the effluent water showed that oxygen level was the most influential in terms of release rates, with the sediments under anoxic conditions generally releasing more phosphate than the other treatments. (31)P NMR showed that the various treatments did influence the P compound group composition of the sediment. In particular, the addition of glucose led to a decrease in orthophosphate and polyphosphate while the addition of formalin led to a decrease in phosphorus lipids, DNA-phosphate and polyphosphate. Oxic conditions resulted in an increase in polyphosphates, and anoxic conditions in a decrease in these. Temperature did not seem to affect the composition significantly.
Inland Waters | 2014
Eleanor B. Mackay; Stephen C. Maberly; Gang Pan; Kasper Reitzel; Andy Bruere; Nicholas Corker; Grant Douglas; Sara Egemose; David P. Hamilton; Tristan Hatton-Ellis; Brian J. Huser; Wei Li; Sebastian Meis; Brian Moss; Miquel Lürling; Geoff Phillips; Said Yasseri; Bryan M. Spears
Abstract The use of geoengineering techniques for phosphorus management offers the promise of greater and quicker chemical and ecological recovery. It can be attractive when used with other restoration measures but should not be considered a panacea. The range of materials being proposed for use as well as the in-lake processes targeted for manipulation continues to grow. With increasing political imperatives to meet regulatory goals for water quality, we recommend a coordinated approach to the scientific understanding, costs, and integration of geoengineering with other approaches to lake management.
Water Research | 2016
Miquel Lürling; Eleanor B. Mackay; Kasper Reitzel; Bryan M. Spears
Eutrophication is the primary worldwide water quality issue. Reducing excessive external nutrient loading is the most straightforward action in mitigating eutrophication, but lakes, ponds and reservoirs often show little, if any, signs of recovery in the years following external load reduction. This is due to internal cycling of phosphorus (P). Geo-engineering, which we can here define as activities intervening with biogeochemical cycles to control eutrophication in inland waters, represents a promising approach, under appropriate conditions, to reduce P release from bed sediments and cyanobacteria accumulation in surface waters, thereby speeding up recovery. In this overview, we draw on evidence from this special issue Geoengineering in Lakes, and on supporting literature to provide a critical perspective on the approach. We demonstrate that many of the strong P sorbents in the literature will not be applicable in the field because of costs and other constraints. Aluminium and lanthanum modified compounds are among the most effective compounds for targeting P. Flocculants and ballast compounds can be used to sink cyanobacteria, in the short term. We emphasize that the first step in managing eutrophication is a system analysis that will reveal the main water and P flows and the biological structure of the waterbody. These site specific traits can be significant confounding factors dictating successful eutrophication management. Geo-engineering techniques, considered collectively, as part of a tool kit, may ensure successful management of eutrophication through a range of target effects. In addition, novel developments in modified zeolites offer simultaneous P and nitrogen control. To facilitate research and reduce the delay from concept to market a multi-national centre of excellence is required.
Water Research | 2016
Brian J. Huser; Sara Egemose; Harvey Harper; Michael Hupfer; Henning S. Jensen; Keith M. Pilgrim; Kasper Reitzel; Emil Rydin; Martyn N. Futter
114 lakes treated with aluminum (Al) salts to reduce internal phosphorus (P) loading were analyzed to identify factors driving longevity of post-treatment water quality improvements. Lakes varied greatly in morphology, applied Al dose, and other factors that may have affected overall treatment effectiveness. Treatment longevity based on declines in epilimnetic total P (TP) concentration averaged 11 years for all lakes (range of 0-45 years). When longevity estimates were used for lakes with improved conditions through the end of measurements, average longevity increased to 15 years. Significant differences in treatment longevity between deeper, stratified lakes (mean 21 years) and shallow, polymictic lakes (mean 5.7 years) were detected, indicating factors related to lake morphology are important for treatment success. A decision tree developed using a partition model suggested Al dose, Osgood index (OI, a morphological index), and watershed to lake area ratio (related to hydraulic residence time, WA:LA) were the most important variables determining treatment longevity. Multiple linear regression showed that Al dose, WA:LA, and OI explained 47, 32 and 3% respectively of the variation in treatment longevity. Other variables (too data limited to include in the analysis) also appeared to be of importance, including sediment P content to Al dose ratios and the presence of benthic feeding fish in shallow, polymictic lakes.