Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kasper S. Pedersen is active.

Publication


Featured researches published by Kasper S. Pedersen.


Chemical Science | 2014

Modifying the properties of 4f single-ion magnets by peripheral ligand functionalisation

Kasper S. Pedersen; Liviu Ungur; Marc Sigrist; Alexander Sundt; Magnus Schau-Magnussen; Veacheslav Vieru; Hannu Mutka; Stéphane Rols; Høgni Weihe; Oliver Waldmann; Liviu F. Chibotaru; Jesper Bendix; Jan Dreiser

We study the ligand-field splittings and magnetic properties of three ErIII single-ion magnets which differ in the peripheral ligand sphere but exhibit similar first coordination spheres by inelastic neutron scattering (INS) and SQUID magnetometry. The INS spectra of the three compounds are profoundly different pointing at a strong response of the magnetic behavior to minor structural changes, as they are e.g. encountered when depositing molecules on surfaces. The observation of several magnetic excitations within the J = 15/2 ground multiplet together with single-crystal magnetic measurements allows for the extraction of the sign and magnitude of all symmetry-allowed Stevens parameters. The parameter values and the energy spectrum derived from INS are compared to the results of state-of-the-art ab initio CASSCF calculations. Temperature-dependent alternating current (ac) susceptibility measurements suggest that the magnetisation relaxation in the investigated temperature range of 1.9 K < T < 5 K is dominated by quantum tunnelling of magnetisation and two-phonon Raman processes. The possibility of observing electron paramagnetic resonance transitions between the ground-state doublet states, which can be suppressed in perfectly axial single-ion magnets, renders the studied systems interesting as representations of quantum bits.


Inorganic Chemistry | 2015

Design of Single-Molecule Magnets: Insufficiency of the Anisotropy Barrier as the Sole Criterion

Kasper S. Pedersen; Jan Dreiser; Høgni Weihe; Romain Sibille; Heini V. Johannesen; Mikkel Sørensen; Bjarne E. Nielsen; Marc Sigrist; Hannu Mutka; Stéphane Rols; Jesper Bendix; Stergios Piligkos

Determination of the electronic energy spectrum of a trigonal-symmetry mononuclear Yb(3+) single-molecule magnet (SMM) by high-resolution absorption and luminescence spectroscopies reveals that the first excited electronic doublet is placed nearly 500 cm(-1) above the ground one. Fitting of the paramagnetic relaxation times of this SMM to a thermally activated (Orbach) model {τ = τ0 × exp[ΔOrbach/(kBT)]} affords an activation barrier, ΔOrbach, of only 38 cm(-1). This result is incompatible with the spectroscopic observations. Thus, we unambiguously demonstrate, solely on the basis of experimental data, that Orbach relaxation cannot a priori be considered as the main mechanism determining the spin dynamics of SMMs. This study highlights the fact that the general synthetic approach of optimizing SMM behavior by maximization of the anisotropy barrier, intimately linked to the ligand field, as the sole parameter to be tuned, is insufficient because of the complete neglect of the interaction of the magnetic moment of the molecule with its environment. The Orbach mechanism is expected dominant only in the cases in which the energy of the excited ligand field state is below the Debye temperature, which is typically low for molecular crystals and, thus, prevents the use of the anisotropy barrier as a design criterion for the realization of high-temperature SMMs. Therefore, consideration of additional design criteria that address the presence of alternative relaxation processes beyond the traditional double-well picture is required.


Angewandte Chemie | 2014

[ReF6]2−: A Robust Module for the Design of Molecule‐Based Magnetic Materials

Kasper S. Pedersen; Marc Sigrist; Mikkel Sørensen; Anne-Laure Barra; Thomas Weyhermüller; Stergios Piligkos; Christian Aa. Thuesen; Morten G. Vinum; Hannu Mutka; Høgni Weihe; Rodolphe Clérac; Jesper Bendix

A facile synthesis of the [ReF6 ](2-) ion and its use as a building block to synthesize magnetic systems are reported. Using dc and ac magnetic susceptibility measurements, INS and EPR spectroscopies, the magnetic properties of the isolated [ReF6 ](2-) unit in (PPh4 )2 [ReF6 ]⋅2 H2 O (1) have been fully studied including the slow relaxation of the magnetization observed below ca. 4 K. This slow dynamic is preserved for the one-dimensional coordination polymer [Zn(viz)4 (ReF6 )]∞ (2, viz=1-vinylimidazole), demonstrating the irrelevance of low symmetry for such magnetization dynamics in systems with easy-plane-type anisotropy. The ability of fluoride to mediate significant exchange interactions is exemplified by the isostructural [Ni(viz)4 (ReF6 )]∞ (3) analogue in which the ferromagnetic Ni(II) -Re(IV) interaction (+10.8 cm(-1) ) dwarfs the coupling present in related cyanide-bridged systems. These results reveal [ReF6 ](2-) to be an unique new module for the design of molecule-based magnetic materials.


Chemical Science | 2012

Direct observation of a ferri-to-ferromagnetic transition in a fluoride-bridged 3d–4f molecular cluster

Jan Dreiser; Kasper S. Pedersen; Cinthia Piamonteze; Stefano Rusponi; Zaher Salman; Md. Ehesan Ali; Magnus Schau-Magnussen; Christian Aa. Thuesen; Stergios Piligkos; Høgni Weihe; Hannu Mutka; Oliver Waldmann; Peter M. Oppeneer; Jesper Bendix; F. Nolting; Harald Brune

We report on the synthesis, crystal structure and magnetic characterisation of the trinuclear, fluoride-bridged, molecular nanomagnet [Dy(hfac)3(H2O)–CrF2(py)4–Dy(hfac)3(NO3)] (1) (hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone, py = pyridine) and a closely related dinuclear species [Dy(hfac)4–CrF2(py)4]·½CHCl3 (2). Element-specific magnetisation curves obtained on 1 by X-ray magnetic circular dichroism (XMCD) allow us to directly observe the field-induced transition from a ferrimagnetic to a ferromagnetic arrangement of the Dy and Cr magnetic moments. By fitting a spin-Hamiltonian model to the XMCD data we extract a weak antiferromagnetic exchange coupling of j = −0.18 cm−1 between the DyIII and CrIII ions. The value found from XMCD is consistent with SQUID magnetometry and inelastic neutron scattering measurements. Furthermore, alternating current susceptibility and muon-spin relaxation measurements reveal that 1 shows thermally activated relaxation of magnetisation with a small effective barrier for magnetisation reversal of Δeff = 3 cm−1. Density-functional theory calculations show that the Dy–Cr couplings originate from superexchange via the fluoride bridges.


Journal of the American Chemical Society | 2016

Toward Molecular 4f Single-Ion Magnet Qubits

Kasper S. Pedersen; Ana-Maria Ariciu; Simon G. McAdams; Høgni Weihe; Jesper Bendix; Floriana Tuna; Stergios Piligkos

Quantum coherence is detected in the 4f single-ion magnet (SIM) Yb(trensal), by isotope selective pulsed EPR spectroscopy on an oriented single crystal. At X-band, the spin-lattice relaxation (T1) and phase memory (Tm) times are found to be independent of the nuclei bearing, or not, a nuclear spin. The observation of Rabi oscillations of the spin echo demonstrates the possibility to coherently manipulate the system for more than 70 rotations. This renders Yb(trensal), a sublimable and chemically modifiable SIM, an excellent candidate for quantum information processing.


Angewandte Chemie | 2014

Fluoride-Bridged {GdIII3MIII2} (M=Cr, Fe, Ga) Molecular Magnetic Refrigerants†

Kasper S. Pedersen; Giulia Lorusso; Juan José Morales; Thomas Weyhermüller; Stergios Piligkos; Saurabh Kumar Singh; Dennis Larsen; Magnus Schau-Magnussen; Gopalan Rajaraman; Marco Evangelisti; Jesper Bendix

The reaction of fac-[M(III)F3(Me3tacn)]⋅x H2O with Gd(NO3)3⋅5H2O affords a series of fluoride-bridged, trigonal bipyramidal {Gd(III)3M(III)2} (M = Cr (1), Fe (2), Ga (3)) complexes without signs of concomitant GdF3 formation, thereby demonstrating the applicability even of labile fluoride-complexes as precursors for 3d-4f systems. Molecular geometry enforces weak exchange interactions, which is rationalized computationally. This, in conjunction with a lightweight ligand sphere, gives rise to large magnetic entropy changes of 38.3 J kg(-1)  K(-1) (1) and 33.1 J kg(-1)  K(-1) (2) for the field change 7 T→0 T. Interestingly, the entropy change, and the magnetocaloric effect, are smaller in 2 than in 1 despite the larger spin ground state of the former secured by intramolecular Fe-Gd ferromagnetic interactions. This observation underlines the necessity of controlling not only the ground state but also close-lying excited states for successful design of molecular refrigerants.


Inorganic Chemistry | 2009

Single-Ion Anisotropy and Exchange Interactions in the Cyano-Bridged Trimers MnIII2MIII(CN)6 (MIII = Co, Cr, Fe) Species Incorporating [Mn(5-Brsalen)]+ Units: An Inelastic Neutron Scattering and Magnetic Susceptibility Study

Philip L. W. Tregenna-Piggott; D. Sheptyakov; Lukas Keller; Sophia I. Klokishner; Sergei M. Ostrovsky; Andrei V. Palii; Oleg S. Reu; Jesper Bendix; Theis Brock-Nannestad; Kasper S. Pedersen; Høgni Weihe; Hannu Mutka

The electronic structures of the compounds K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)M(III)(CN)(6)].2H(2)O (M(III) = Co(III), Cr(III), Fe(III)) have been determined by inelastic neutron scattering (INS) and magnetic susceptibility studies, revealing the manganese(III) single-ion anisotropy and exchange interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets. The value of 17(2) cm(-1) established from AC susceptibility measurements for a spin-reversal barrier of K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)Cr(CN)(6)].2H(2)O may be readily rationalized in terms of the energy level diagram determined directly by INS. AC susceptibility measurements on samples of K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)Fe(CN)(6)].2H(2)O are contrary to those previously reported, exhibiting but the onset of peaks below temperatures of 1.8 K at oscillating frequencies in the range of 100-800 Hz. INS measurements reveal an anisotropic ferromagnetic manganese(III)-iron(III) exchange interaction, in accordance with theoretical expectations based on the unquenched orbital angular momentum of the [Fe(CN)(6)](3-) anion, giving rise to an M(s) approximately +/-9/2 ground state, isolated by approximately 11.5 cm(-1) from the higher-lying levels. The reported INS and magnetic data should now serve as a benchmark against which theoretical models that aim to inter-relate the electronic and molecular structure of molecular magnets should be tested.


Inorganic Chemistry | 2011

Magnetic properties of a manganese(III) Chain with monoatomic bridges: catena-MnF(salen).

Torben Birk; Kasper S. Pedersen; Stergios Piligkos; Christian Aa. Thuesen; Högni Weihe; Jesper Bendix

In the solid state, MnF(salen) forms chains wherein fairly linear fluoride bridges between high-spin Mn(III) centers are observed. We interpret the magnetic properties of these chains by use of the classical Fisher model and by use of the high-temperature expansion approach, as well as by exact matrix diagonalization of the spin Hamiltonian, of model rings. In solution, electron paramagnetic resonance shows the chains to be symmetrically cleaved to monomeric MnF(salen).


ACS Nano | 2014

Exchange Interaction of Strongly Anisotropic Tripodal Erbium Single- Ion Magnets with Metallic Surfaces

Jan Dreiser; Christian Wäckerlin; Md. Ehesan Ali; Cinthia Piamonteze; Fabio Donati; Aparajita Singha; Kasper S. Pedersen; Stefano Rusponi; Jesper Bendix; Peter M. Oppeneer; Thomas A. Jung; Harald Brune

We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed on a Ni thin film on Cu(100) single-crystalline surfaces. X-ray magnetic circular dichroism (XMCD) measurements performed on Au(111) samples covered with molecular monolayers held at temperatures down to 4 K suggest that the easy axes of the strongly anisotropic molecules are randomly oriented. Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals that the molecules are mobile on Au(111) at room temperature, whereas they are more strongly attached on Ni/Cu(100). X-ray photoelectron spectroscopy results provide evidence for the chemical bonding between Er(trensal) molecules and the Ni substrate. Density functional theory calculations support these findings and, in addition, reveal the most stable adsorption configuration on Ni/Cu(100) as well as the Ni-Er exchange path. Our study suggests that the magnetic moment of Er(trensal) can be stabilized via suppression of quantum tunneling of magnetization by exchange coupling to the Ni surface atoms. Moreover, it opens up pathways toward optical addressing of surface-deposited single-ion magnets.


Journal of Physical Chemistry A | 2012

X-ray Magnetic Circular Dichroism (XMCD) Study of a Methoxide-Bridged Dy^III-Cr^III Cluster Obtained by Fluoride Abstraction from cis-[Cr^III F_2 (phen)_2]^+

Jan Dreiser; Kasper S. Pedersen; Torben Birk; Magnus Schau-Magnussen; Cinthia Piamonteze; Stefano Rusponi; Thomas Weyhermüller; Harald Brune; Frithjof Nolting; Jesper Bendix

An isostructural series of dinuclear chromium(III)-lanthanide(III) clusters is formed by fluoride abstraction of cis-[CrF2(phen)2](+) by Ln(3+) resulting in LnF3 and methoxide-bridged Cr-Ln clusters (Ln = Nd (1), Tb (2), Dy (3)) of formula [Cr(III)(phen)2(μ-MeO)2Ln(NO3)4]·xMeOH (x = 2-2.73). In contrast to fluoride, methoxide bridges in a nonlinear fashion, which facilitates chelation. For 3, X-ray magnetic circular dichroism (XMCD) provides element-specific magnetization curves that are compared to cluster magnetization and susceptibility data acquired by SQUID magnetometry. The combination of XMCD and SQUID is able to resolve very small magnetic coupling values and reveals a weak Cr(III)-Dy(III) coupling of j = -0.04(3) cm(-1). The Dy(III) ion has a ground-state Kramers doublet of mJ = ±13/2, and the first excited doublet is found to be mJ = ±11/2 at an energy of δ = 57(21) cm(-1). The Cr(III) ion exhibits a uniaxial anisotropy of DCr = -1.7(1.0) cm(-1). Further, we observe that a weak anisotropic coupling of dipolar origin is sufficient to model the data, suggesting that methoxide bridges do not play a significant role in the magnetic coupling for the present systems.

Collaboration


Dive into the Kasper S. Pedersen's collaboration.

Top Co-Authors

Avatar

Jesper Bendix

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Høgni Weihe

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannu Mutka

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodolphe Clérac

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jan Dreiser

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Marc Sigrist

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge