Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kasturi Mukhopadhyay is active.

Publication


Featured researches published by Kasturi Mukhopadhyay.


Antimicrobial Agents and Chemotherapy | 2002

Drug Susceptibilities of Yeast Cells Are Affected by Membrane Lipid Composition

Kasturi Mukhopadhyay; Avmeet Kohli; Rajendra Prasad

ABSTRACT In the present study we have exploited isogenic erg mutants of Saccharomyces cerevisiae to examine the contribution of an altered lipid environment on drug susceptibilities of yeast cells. It is observed that erg mutants, which possess high levels of membrane fluidity, were hypersensitive to the drugs tested, i.e., cycloheximide (CYH), o-phenanthroline, sulfomethuron methyl, 4-nitroquinoline oxide, and methotrexate. Most of the erg mutants except mutant erg4 were, however, resistant to fluconazole (FLC). By using the fluorophore rhodamine-6G and radiolabeled FLC to monitor the passive diffusion, it was observed that erg mutant cells elicited enhanced diffusion. The addition of a membrane fluidizer, benzyl alcohol (BA), to S. cerevisiae wild-type cells led to enhanced membrane fluidity. However, a 10 to 12% increase in BA-induced membrane fluidity did not alter the drug susceptibilities of the S. cerevisiae wild-type cells. The enhanced diffusion observed in erg mutants did not seem to be solely responsible for the observed hypersensitivity of erg mutants. In order to ascertain the functioning of drug extrusion pumps encoding the genes CDR1 (ATP-binding cassette family) and CaMDR1 (MFS family) of Candida albicans in a different lipid environment, they were independently expressed in an S. cerevisiae erg mutant background. While the fold change in drug resistance mediated by CaMDR1 remained the same or increased in erg mutants, susceptibility to FLC and CYH mediated by CDR1 was increased (decrease in fold resistance). Our results demonstrate that between the two drug extrusion pumps, Cdr1p appeared to be more adversely affected by the fluctuations in the membrane lipid environment (particularly to ergosterol). By using 6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino-hexanoyl] sphingosyl phosphocholine (a fluorescent analogue of sphingomyelin), a close interaction between membrane ergosterol and sphingomyelin which appears to be disrupted in erg mutants is demonstrated. Taken together it appears that multidrug resistance in yeast is closely linked to the status of membrane lipids, wherein the overall drug susceptibility phenotype of a cell appears to be an interplay among drug diffusion, extrusion pumps, and the membrane lipid environment.


Antimicrobial Agents and Chemotherapy | 2002

In Vitro Low-Level Resistance to Azoles in Candida albicans Is Associated with Changes in Membrane Lipid Fluidity and Asymmetry

Avmeet Kohli; Smriti; Kasturi Mukhopadhyay; Ashok Rattan; Rajendra Prasad

ABSTRACT The present study tracks the development of low-level azole resistance in in vitro fluconazole-adapted strains of Candida albicans, which were obtained by serially passaging a fluconazole-susceptible dose-dependent strain, YO1-16 (fluconazole MIC, 16 μg ml−1) in increasing concentrations of fluconazole, resulting in strains YO1-32 (fluconazole MIC, 32 μg ml−1) and YO1-64 (MIC, 64 μg ml−1). We show that acquired resistance to fluconazole in this series of isolates is not a random process but is a gradually evolved complex phenomenon that involves multiple changes, which included the overexpression of ABC transporter genes, e.g., CDR1 and CDR2, and the azole target enzyme, ERG11. The sequential rise in fluconazole MICs in these isolates was also accompanied by cross-resistance to other azoles and terbinafine. Interestingly, fluorescent polarization measurements performed by using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene revealed that there was a gradual increase in membrane fluidity of adapted strains. The increase in fluidity was reflected by observed change in membrane order, which was considerably decreased (decrease in fluorescence polarization values, P value) in the adapted strain (P value of 0.1 in YO1-64, compared to 0.19 in the YO1-16 strain). The phospholipid composition of the adapted strain was not significantly altered; however, ergosterol content was reduced in YO1-64 from that in the YO1-16 strain. The asymmetrical distribution of phosphatidylethanolamine (PE) between two monolayers of plasma membrane was also changed, with PE becoming more exposed to the outer monolayer in the YO1-64 strain. The results of the present study suggest for the first time that changes in the status of membrane lipid phase and asymmetry could contribute to azole resistance in C. albicans.


Antimicrobial Agents and Chemotherapy | 2004

Membrane Sphingolipid-Ergosterol Interactions Are Important Determinants of Multidrug Resistance in Candida albicans

Kasturi Mukhopadhyay; Tulika Prasad; Preeti Saini; Thomas J. Pucadyil; Amitabha Chattopadhyay; Rajendra Prasad

ABSTRACT In this study, we examined the importance of membrane ergosterol and sphingolipids in the drug susceptibilities of Candida albicans. We used three independent methods to test the drug susceptibilities of erg mutant cells, which were defective in ergosterol biosynthesis. While spot and filter disk assays revealed that erg2 and erg16 mutant cells of C. albicans became hypersensitive to almost all of the drugs tested (i.e., 4-nitroquinoline oxide, terbinafine, o-phenanthroline, itraconazole, and ketoconazole), determination of the MIC at which 80% of the cells were inhibited revealed more than fourfold increase in susceptibility to ketoconazole and terbinafine. Treatment of wild-type C. albicans cells with fumonisin B1 resulted in 45% inhibition of sphingolipid biosynthesis and caused cells to become hypersensitive to the above drugs. Although erg mutants displayed enhanced membrane fluidity and passive diffusion, these changes alone were not sufficient to elicit the observed hypersusceptibility phenotype of erg mutants. For example, the induction in vitro of a 12% change in the membrane fluidity of C. albicans cells by a membrane fluidizer, benzyl alcohol, did not affect the drug susceptibilities of Candida cells. Additionally, the surface localization of green fluorescent protein-tagged Cdr1p, a major drug efflux pump protein of C. albicans, revealed that any disruption in ergosterol and sphingolipid interactions also interfered with its proper surface localization and functioning. A 50% reduction in the efflux of the Cdr1p substrate, rhodamine 6G, in erg mutant cells or in cells with a reduced sphingolipid content suggested a strong correlation between these membrane lipid components and this major efflux pump protein. Taken together, the results of our study demonstrate for the first time that there is an interaction between membrane ergosterol and sphingolipids, that a reduction in the content of either of these two components results in a disruption of this interaction, and that this disruption has deleterious effects on the drug susceptibilities of C. albicans cells.


Antimicrobial Agents and Chemotherapy | 2005

Functional Interrelationships between Cell Membrane and Cell Wall in Antimicrobial Peptide-Mediated Killing of Staphylococcus aureus

Yan Q. Xiong; Kasturi Mukhopadhyay; Michael R. Yeaman; Jill Adler-Moore; Arnold S. Bayer

ABSTRACT Perturbation of the Staphylococcus aureus cytoplasmic membrane (CM) is felt to play a key role in the microbicidal mechanism of many antimicrobial peptides (APs). However, it is not established whether membrane permeabilization (MP) alone is sufficient to kill susceptible staphylococci or if the cell wall (CW) and/or intracellular targets contribute to AP-induced lethality. We hypothesized that the relationships between MP and killing may differ for distinct APs. In this study, we investigated the association between AP-induced MP and lethality in S. aureus whole cells versus CW-free protoplasts, and in comparison to the MP of liposomes modeled after whole CMs in terms of phospholipid composition, fluidity and charge. Four APs with different structure-activity relationships were examined: thrombin-induced platelet microbicidal protein 1 (tPMP-1), human neutrophil protein 1 (hNP-1), gramicidin D, and polymyxin B. MP was quantified fluorometrically by calcein release. All APs tested, except polymyxin B, caused concentration-dependent MP and killing of whole cells, but not of protoplasts. The reduced AP susceptibility of protoplasts was associated with increased cardiolipin and lysyl-phosphatidylglycerol content and reduced fluidity of their CMs. However, liposomal MP induced by tPMP-1, hNP-1, and gramicidin D paralleled that of whole cells. Collectively, these results indicate that (i) structurally distinct APs likely exert their staphylocidal effects by differing mechanisms, (ii) MP is not the sole event leading to AP-induced staphylocidal activity, (iii) a complex interrelationship exists between the CM and CW in AP-induced killing, and (iv) liposomes modeled upon whole cell or protoplast CMs can recapitulate the respective susceptibilities to killing by distinct APs.


PLOS ONE | 2015

Bactericidal Activity of Curcumin I Is Associated with Damaging of Bacterial Membrane

Poonam Tyagi; Madhuri Singh; Himani Kumari; Anita Kumari; Kasturi Mukhopadhyay

Curcumin, an important constituent of turmeric, is known for various biological activities, primarily due to its antioxidant mechanism. The present study focused on the antibacterial activity of curcumin I, a significant component of commercial curcumin, against four genera of bacteria, including those that are Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa). These represent prominent human pathogens, particularly in hospital settings. Our study shows the strong antibacterial potential of curcumin I against all the tested bacteria from Gram-positive as well as Gram-negative groups. The integrity of the bacterial membrane was checked using two differential permeabilization indicating fluorescent probes, namely, propidium iodide and calcein. Both the membrane permeabilization assays confirmed membrane leakage in Gram-negative and Gram-positive bacteria on exposure to curcumin I. In addition, scanning electron microscopy and fluorescence microscopy were employed to confirm the membrane damages in bacterial cells on exposure to curcumin I. The present study confirms the broad-spectrum antibacterial nature of curcumin I, and its membrane damaging property. Findings from this study could provide impetus for further research on curcumin I regarding its antibiotic potential against rapidly emerging bacterial pathogens.


Journal of Coordination Chemistry | 2014

X-ray crystal structure of a Cu(II) complex with the antiparasitic drug tinidazole, interaction with calf thymus DNA and evidence for antibacterial activity

Ramesh Chandra Santra; Kushal Sengupta; Rajdip Dey; Tahsina Shireen; Piyal Das; Partha Sarathi Guin; Kasturi Mukhopadhyay; Saurabh Das

Interaction of metal ions with biologically active molecules like 5-nitroimidazoles modulates their electronic environment and therefore influences their biological function. In the present work, an antiparasitic drug tinidazole (tnz) was selected and a Cu(II) complex of tnz [Cu2(OAc)4(tnz)2] was prepared. A dinuclear paddle-wheel [Cu2(OAc)4(tnz)2] was obtained by single-crystal XRD and further characterized by spectroscopic techniques and cyclic voltammetry. To understand the biological implications of complex formation, interaction of tnz and its complex was studied with calf thymus DNA, bacterial and fungal cell lines. Results of calf thymus DNA interaction using cyclic voltammetry indicate the overall binding constant (K*) of Cu2(OAc)4(tnz)2 [(59 ± 6) × 104 M−1] is ~17 times greater than that of tnz [(3.3 ± 0.4) × 104 M−1]. Minimum inhibitory concentration values suggest that [Cu2(OAc)4(tnz)2] possesses better antibacterial activity than tnz on both bacterial strains, while the activity on a fungal strain was comparable. Tinidazole, a 5-nitroimidazole is active on protozoan and bacterial infections. This study made an attempt to see if a Cu(II) complex of tinidazole had comparable efficacy on chosen bacteria and fungi. The prepared complex was characterized by XRD, spectroscopy, elemental analysis cyclic voltammetry. DNA interaction was studied using cyclic voltammetry and fitted by non-linear analysis.


Peptides | 2009

In vitro antimicrobial activity of alpha-melanocyte stimulating hormone against major human pathogen Staphylococcus aureus

Madhuri; Tahsina Shireen; S.K. Venugopal; Dipankar Ghosh; Ravisekhar Gadepalli; Benu Dhawan; Kasturi Mukhopadhyay

Alpha-melanocyte stimulating hormone (alpha-MSH) is an endogenous anti-inflammatory peptide reported to possess antimicrobial properties, however their role as antibacterial peptides is yet to be established. In the present study, we examined in vitro antibacterial activity of alpha-MSH against S. aureus strain ISP479C and several methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) S. aureus strains. Antibacterial activity was examined by varying several parameters, viz., bacterial cell densities, growth phase, pH, salt concentration, and temperature. Antibacterial activity was also examined in complex biomatrices of rat whole blood, plasma and serum as well as in biofilm form of bacteria. Our results showed that alpha-MSH possessed significant and rapid antibacterial activity against all the studied strains including MRSA (84% strains were killed on exposure to 12 microM of alpha-MSH for 2h). pH change from 7.4 to 4 increased alpha-MSH staphylocidal activity against ISP479C by 21%. Antibacterial activity of alpha-MSH was dependent on bacterial cell density and independent of growth phase. Moreover, antimicrobial activity was retained when alpha-MSH was placed into whole blood, plasma, and serum. Most importantly, alpha-MSH exhibited antibacterial activity against staphylococcal biofilms. Multiple membrane permeabilization assays suggested that membrane damage was, at least in part, a major mechanism of staphylocidal activity of alpha-MSH. Collectively the above findings suggest that alpha-MSH could be a promising candidate of a novel class of antimicrobial agents.


Antimicrobial Agents and Chemotherapy | 2011

C-Terminal Amino Acids of Alpha-Melanocyte-Stimulating Hormone Are Requisite for Its Antibacterial Activity against Staphylococcus aureus

Madhuri Singh; Kasturi Mukhopadhyay

ABSTRACT Alpha-melanocyte-stimulating hormone (α-MSH) is an endogenous neuropeptide that is known for its anti-inflammatory and antipyretic activities. We recently demonstrated that α-MSH possesses staphylocidal activity and causes bacterial membrane damage. To understand the role of its amino acid sequences in the staphylocidal mechanism, in the present study we investigated the antimicrobial activities of different fragments of α-MSH, i.e., α-MSH(6-13), α-MSH(11-13), and α-MSH(1-5), and compared them with that of the entire peptide. Our results showed that peptides containing the C-terminal region of α-MSH, namely, α-MSH(6-13) and α-MSH(11-13), efficiently killed >90% of both methicillin-sensitive and -resistant Staphylococcus aureus cells in the micromolar range and ∼50% of these cells in the nanomolar range; their efficiency was comparable to that of the entire α-MSH, whereas the peptide containing the N-terminal region, α-MSH(1-5), was found to be ineffective against S. aureus. The antimicrobial activity of α-MSH and its C-terminal fragments was not affected by the presence of NaCl or even divalent cations such as Ca2+ and Mg2+. Similar to the case for the parent peptide, α-MSH(6-13) and α-MSH(11-13) also depolarized and permeabilized Staphylococcus cells (∼70 to 80% of the cells were depolarized and lysed after 2 h of peptide exposure at micromolar concentrations). Furthermore, scanning and transmission electron microscopy showed remarkable morphological and ultrastructural changes on S. aureus cell surface due to exposure to α-MSH-based peptides. Thus, our observations indicate that C-terminal fragments of α-MSH retain the antimicrobial activity of entire peptide and that their mechanism of action is similar to that of full-length peptide. These observations are important and are critical in the rational design of α-MSH-based therapeutics with optimal efficacy.


BioMed Research International | 2014

Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide.

Madhuri Singh; Kasturi Mukhopadhyay

The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSHs anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent.


Antimicrobial Agents and Chemotherapy | 2013

Differential Adaptive Responses of Staphylococcus aureus to In Vitro Selection with Different Antimicrobial Peptides

Tahsina Shireen; Madhuri Singh; Tiyasa Das; Kasturi Mukhopadhyay

ABSTRACT We subjected Staphylococcus aureus ATCC 29213 to serial passage in the presence of subinhibitory concentrations of magainin 2 and gramicidin D for several hundred generations. We obtained S. aureus strains with induced resistance to magainin 2 (strain 55MG) and gramicidin D (strain 55GR) that showed different phenotypic changes in membrane properties. Both exhibited a change in membrane phospholipid content and an increase in membrane rigidity, while an alteration in net charge compared to that of the control occurred only in the case of 55MG.

Collaboration


Dive into the Kasturi Mukhopadhyay's collaboration.

Top Co-Authors

Avatar

Madhuri Singh

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Tahsina Shireen

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Jyotsna Singh

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Benu Dhawan

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Rajendra Prasad

Amity Institute of Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alpana Sharma

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Avmeet Kohli

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge