Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kasumi Ishida is active.

Publication


Featured researches published by Kasumi Ishida.


PLOS ONE | 2014

Amoebal endosymbiont Neochlamydia genome sequence illuminates the bacterial role in the defense of the host amoebae against Legionella pneumophila.

Kasumi Ishida; Tsuyoshi Sekizuka; Kyoko Hayashida; Junji Matsuo; Fumihiko Takeuchi; Makoto Kuroda; Shinji Nakamura; Tomohiro Yamazaki; Mitsutaka Yoshida; Kaori Takahashi; Hiroki Nagai; Chihiro Sugimoto; Hiroyuki Yamaguchi

Previous work has shown that the obligate intracellular amoebal endosymbiont Neochlamydia S13, an environmental chlamydia strain, has an amoebal infection rate of 100%, but does not cause amoebal lysis and lacks transferability to other host amoebae. The underlying mechanism for these observations remains unknown. In this study, we found that the host amoeba could completely evade Legionella infection. The draft genome sequence of Neochlamydia S13 revealed several defects in essential metabolic pathways, as well as unique molecules with leucine-rich repeats (LRRs) and ankyrin domains, responsible for protein-protein interaction. Neochlamydia S13 lacked an intact tricarboxylic acid cycle and had an incomplete respiratory chain. ADP/ATP translocases, ATP-binding cassette transporters, and secretion systems (types II and III) were well conserved, but no type IV secretion system was found. The number of outer membrane proteins (OmcB, PomS, 76-kDa protein, and OmpW) was limited. Interestingly, genes predicting unique proteins with LRRs (30 genes) or ankyrin domains (one gene) were identified. Furthermore, 33 transposases were found, possibly explaining the drastic genome modification. Taken together, the genomic features of Neochlamydia S13 explain the intimate interaction with the host amoeba to compensate for bacterial metabolic defects, and illuminate the role of the endosymbiont in the defense of the host amoebae against Legionella infection.


PLOS ONE | 2013

Protochlamydia Induces Apoptosis of Human HEp-2 Cells through Mitochondrial Dysfunction Mediated by Chlamydial Protease-Like Activity Factor

Junji Matsuo; Shinji Nakamura; Atsushi Ito; Tomohiro Yamazaki; Kasumi Ishida; Yasuhiro Hayashi; Mitsutaka Yoshida; Kaori Takahashi; Tsuyoshi Sekizuka; Fumihiko Takeuchi; Makoto Kuroda; Hiroki Nagai; Kyoko Hayashida; Chihiro Sugimoto; Hiroyuki Yamaguchi

Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7–1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose) polymerase (PARP) was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF), blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054) did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic and primitive chlamydiae.


Infection and Immunity | 2015

Synergistic Costimulatory Effect of Chlamydia pneumoniae with Carbon Nanoparticles on NLRP3 Inflammasome-Mediated Interleukin-1β Secretion in Macrophages

Junji Matsuo; Shinji Nakamura; Seiji Takeda; Kasumi Ishida; Tomohiro Yamazaki; Mitsutaka Yoshida; Shu-Ping Hui; Hiroyuki Yamaguchi

ABSTRACT The obligate intracellular bacterium Chlamydia pneumoniae is not only a causative agent of community-acquired pneumonia but is also associated with a more serious chronic disease, asthma, which might be exacerbated by air pollution containing carbon nanoparticles. Although a detailed mechanism of exacerbation remains unknown, the proinflammatory cytokine interleukin-1β (IL-1β) is a critical player in the pathogenesis of asthma. C. pneumoniae induces IL-1β in macrophages via NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activation and Toll-like receptor 2/4 (TLR2/4) stimulation. Carbon nanoparticles, such as carbon nanotubes (CNTs), can also evoke the NLRP3 inflammasome to trigger IL-1β secretion from lipopolysaccharide-primed macrophages. This study assessed whether costimulation of C. pneumoniae with CNTs synergistically enhanced IL-1β secretion from macrophages, and determined the molecular mechanism involved. Enhanced IL-1β secretion from C. pneumoniae-infected macrophages by CNTs was dose and time dependent. Transmission electron microscopy revealed that C. pneumoniae and CNTs were engulfed concurrently by macrophages. Inhibitors of actin polymerization or caspase-1, a component of the inflammasome, significantly blocked IL-1β secretion. Gene silencing using small interfering RNA (siRNA) targeting the NLRP3 gene also abolished IL-1β secretion. Other inhibitors (K+ efflux inhibitor, cathepsin B inhibitor, and reactive oxygen species-generating inhibitor) also blocked IL-1β secretion. Taken together, these findings demonstrated that CNTs synergistically enhanced IL-1β secretion from C. pneumoniae-infected macrophages via the NLRP3 inflammasome and caspase-1 activation, providing novel insight into our understanding of how C. pneumoniae infection can exacerbate asthma.


Environmental Microbiology | 2014

High‐temperature adapted primitive Protochlamydia found in Acanthamoeba isolated from a hot spring can grow in immortalized human epithelial HEp‐2 cells

Aya Sampo; Junji Matsuo; Chikayo Yamane; Kenji Yagita; Shinji Nakamura; Natsumi Shouji; Yasuhiro Hayashi; Tomohiro Yamazaki; Mitsutaka Yoshida; Miho Kobayashi; Kasumi Ishida; Hiroyuki Yamaguchi

To elucidate how ancient pathogenic chlamydiae could overcome temperature barriers to adapt to human cells, we characterized a primitive chlamydia found in HS-T3 amoebae (Acanthamoeba) isolated from a hot spring. Phylogenetic analysis revealed the primitive species to be Protochlamydia. In situ hybridization staining showed broad distribution into the amoebal cytoplasm, which was supported by transmission electron microscopic analysis showing typical chlamydial features, with inclusion bodies including both elementary and reticular bodies. Interestingly, although most amoebae isolated from natural environments show reduced growth at 37°C, the HS-T3 amoebae harbouring the Protochlamydia grew well at body temperature. Although infection with Protochlamydia did not confer temperature tolerance to the C3 amoebae, the number of infectious progenies rapidly increased at 37°C with amoebal lysis. In immortalized human epithelial HEp-2 cells, fluorescence microscopic study revealed atypical inclusion of the Protochlamydia, and quantitative real-time polymerase chain reaction analyses also showed an increase in 16S ribosomal RNA DNA amounts. Together, these results showed that the Protochlamydia found in HS-T3 amoebae isolated from a hot spring successfully adapted to immortalized human HEp-2 cells at 37°C, providing further information on the evolution of ancient Protochlamydia to the present pathogenic chlamydiae.


Microbes and Infection | 2013

Chlamydophila pneumoniae in human immortal Jurkat cells and primary lymphocytes uncontrolled by interferon-γ

Kasumi Ishida; Takeru Kubo; Ayumi Saeki; Chikayo Yamane; Junji Matsuo; Yimin; Shinji Nakamura; Yasuhiro Hayashi; Miyuki Kunichika; Mitsutaka Yoshida; Kaori Takahashi; Itaru Hirai; Yoshimasa Yamamoto; Ken-ichiro Shibata; Hiroyuki Yamaguchi

Lymphocytes are a potential host cell for Chlamydophila pneumoniae, although why the bacteria must hide in lymphocytes remains unknown. Meanwhile, interferon (IFN)-γ is a crucial factor for eliminating chlamydiae from infected cells through indoleamine 2,3-dioxygenase (IDO) expression, resulting in depletion of tryptophan. We therefore assessed if lymphocytes could work as a shelter for the bacteria to escape IFN-γ. C. pneumoniae grew normally in human lymphoid Jurkat cells, even in the presence of IFN-γ or under stimulation with phorbol myristate acetate plus ionomycin. Although Jurkat cells expressed IFN-γ receptor CD119, their lack of IDO expression was confirmed by RT-PCR and western blotting. Also, C. pneumoniae survived in enriched human peripheral blood lymphocytes, even in the presence of IFN-γ. Furthermore, C. pneumoniae in spleen cells obtained from IFN-γ knockout mice with C57BL/6 background was maintained in a similar way to wild-type mice, supporting a minimal role of IFN-γ-related response for eliminating C. pneumoniae from lymphocytes. Thus, we concluded that IFN-γ did not remove C. pneumoniae from lymphocytes, possibly providing a shelter for C. pneumoniae to escape from the innate immune response, which has direct clinical significance.


PLOS ONE | 2015

Amoebal Endosymbiont Parachlamydia acanthamoebae Bn9 Can Grow in Immortal Human Epithelial HEp-2 Cells at Low Temperature; An In Vitro Model System to Study Chlamydial Evolution

Chikayo Yamane; Tomohiro Yamazaki; Shinji Nakamura; Junji Matsuo; Kasumi Ishida; Sumire Yamazaki; Satoshi Oguri; Natsumi Shouji; Yasuhiro Hayashi; Mitsutaka Yoshida; Yimin; Hiroyuki Yamaguchi

Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7–1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37°C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30°C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30°C compared to at 37°C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.


Genome Announcements | 2015

Draft Genome Sequence of High-Temperature-Adapted Protochlamydia sp. HS-T3, an Amoebal Endosymbiotic Bacterium Found in Acanthamoeba Isolated from a Hot Spring in Japan

Hiroyuki Yamaguchi; Junji Matsuo; Tomohiro Yamazaki; Kasumi Ishida; Kenji Yagita

ABSTRACT Here, we report the draft genome sequence of high-temperature-adapted Protochlamydia sp. strain HS-T3, an environmental chlamydia. This bacterium is an amoebal endosymbiont, found in Acanthamoeba isolated from a hot spring in Japan. Strain HS-T3 readily grew in mammalian cells at 37°C, a characteristic not previously reported for environmental chlamydiae.


BMC Microbiology | 2014

Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth

Kasumi Ishida; Junji Matsuo; Yoshimasa Yamamoto; Hiroyuki Yamaguchi

BackgroundPathogenic chlamydiae are obligate intracellular pathogens and have adapted successfully to human cells, causing sexually transmitted diseases or pneumonia. Chlamydial outer protein N (CopN) is likely a critical effector protein secreted by the type III secretion system in chlamydiae, which manipulates host cells. However, the mechanisms of its action remain to be clarified. In this work, we aimed to identify previously unidentified CopN effector target in host cells.ResultsWe first performed a pull-down assay with recombinant glutathione S-transferase (GST) fusion CopN proteins (GST–CpCopN: Chlamydia pneumoniae TW183, GST–CtCopN: Chlamydia trachomatis D/UW-3/CX) as “bait” and soluble lysates obtained from human immortal epithelial HEp-2 cells as “prey”, followed by SDS-PAGE with mass spectroscopy (MS). We found that a host cell protein specifically bound to GST–CpCopN, but not GST–CtCopN. MS revealed the host protein to be fructose bisphosphate aldolase A (aldolase A), which plays a key role in glycolytic metabolism. We also confirmed the role of aldolase A in chlamydia-infected HEp-2 cells by using two distinct experiments for gene knockdown with an siRNA specific to aldolase A transcripts, and for assessment of glycolytic enzyme gene expression levels. As a result, both the numbers of chlamydial inclusion-forming units and RpoD transcripts were increased in the chlamydia-infected aldolase A knockdown cells, as compared with the wild-type HEp-2 cells. Meanwhile, chlamydial infection tended to enhance expression of aldolase A.ConclusionsWe discovered that one of the C. pneumoniae CopN targets is the glycolytic enzyme aldolase A. Sequestering aldolase A may be beneficial to bacterial growth in infected host cells.


Journal of Infection and Chemotherapy | 2012

Effect of the steroid receptor antagonist RU486 (mifepristone) on an IFNγ-induced persistent Chlamydophila pneumoniae infection model in epithelial HEp-2 cells

Kasumi Ishida; Tomohiro Yamazaki; Kazuki Motohashi; Miho Kobayashi; Junji Matsuo; Takako Osaki; Tomoko Hanawa; Shigeru Kamiya; Yoshimasa Yamamoto; Hiroyuki Yamaguchi

We have previously demonstrated that the steroid receptor antagonist mifepristone (RU486) causes growth inhibition of Chlamydophila pneumoniae by binding to and subsequently destroying the bacteria during their normal developmental cycle in epithelial HEp-2 cells. In the present study, we assessed the efficacy of treatment with RU486 against persistent C. pneumoniae infection in interferon (IFN)γ-treated HEp-2 cells. Assessment of bacterial growth modification, the number of infectious progenies, the formation of inclusions, and the expressions of the C. pneumoniae genes 16S rRNA and hsp60 were investigated in cells with or without IFNγ stimulation in the presence of RU486, using an inclusion-forming unit (IFU) assay, fluorescence microscopic analysis, and reverse transcription polymerase chain reaction (RT-PCR), respectively. Our results indicated that RU486 treatment produced growth inhibition and an absence of C. pneumoniae gene expression in normal HEp-2 cells and that this treatment failed to inhibit C. pneumoniae growth in HEp-2 cells stimulated with IFNγ. These results indicate that treatment with RU486 had a limited effect on C. pneumoniae growth only during the active developmental stage of the bacteria, suggesting that the bacterial target molecule of RU486 is not expressed sufficiently during persistent infection in which there is an aberrant developmental cycle. Thus, our findings provide valuable insight into the complicated chlamydial biological processes involved in the recurrent cycling between normal and persistent infections.


Journal of General and Applied Microbiology | 2015

Protozoal ciliate promotes bacterial autoinducer-2 accumulation in mixed culture with Escherichia coli.

Satoshi Oguri; Tomoko Hanawa; Junji Matsuo; Kasumi Ishida; Tomohiro Yamazaki; Shinji Nakamura; Torahiko Okubo; Tatsuya Fukumoto; Kouzi Akizawa; Chikara Shimizu; Shigeru Kamiya; Hiroyuki Yamaguchi

We have previously demonstrated conjugation of Escherichia coli into vacuoles of the protozoal ciliate (Tetrahymena thermophila). This indicated a possible role of ciliates in evoking bacterial quorum sensing, directly connecting bacterial survival via accumulation in the ciliate vacuoles. We therefore assessed if ciliates promoted bacterial autoinducer (AI)-2 accumulation with vacuole formation, which controls quorum sensing. E. coli AI-2 accumulation was significantly enhanced in the supernatants of a mixed culture of ciliates and bacteria, likely depending on ciliate density rather than bacterial concentration. As expected, AI-2 production was significantly correlated with vacuole formation. The experiment with E. coli luxS mutants showed that ciliates failed to enhance bacterial AI-2 accumulation, denying a nonspecific phenomenon. Fluorescence microscopy revealed accumulation of fragmented bacteria in ciliate vacuoles, and, more importantly, expulsion of the vacuoles containing disrupted bacteria into the culture supernatant. There was no increase in the expression of luxS (encoding AI-2) or ydgG (a transporter for controlling bacterial export of AI-2). We conclude that ciliates promote bacterial AI-2 accumulation in a mixed culture, via accumulation of disrupted bacteria in ciliate vacuoles followed by expulsion of the vacuoles, independently of luxS or ydgG gene induction. This is believed to be the first demonstration of a relationship between E. coli AI-2 dynamics and ciliates. In the natural environment, ciliate biotopes may provide a survival advantage to bacteria inhabiting such biotopes, via evoking quorum sensing.

Collaboration


Dive into the Kasumi Ishida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge