Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katalin Sándor is active.

Publication


Featured researches published by Katalin Sándor.


Pain | 2005

Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice.

Kata Bölcskei; Zsuzsanna Helyes; Árpád Szabó; Katalin Sándor; Krisztián Elekes; József Németh; Róbert Almási; Erika Pintér; Gábor Petho; János Szolcsányi

&NA; Capsaicin‐sensitive, TRPV1 (transient receptor potential vanilloid 1) receptor‐expressing primary sensory neurons exert local and systemic efferent effects besides the classical afferent function. The TRPV1 receptor is considered a molecular integrator of various physico‐chemical noxious stimuli. In the present study its role was analysed in acute nociceptive tests and chronic neuropathy models by comparison of wild‐type (WT) and TRPV1 knockout (KO) mice. The formalin‐induced acute nocifensive behaviour, carrageenan‐evoked inflammatory mechanical hyperalgesia and partial sciatic nerve lesion‐induced neuropathic mechanical hyperalgesia were not different in WT and KO animals. Acute nocifensive behaviour after intraplantar injection of phorbol 12‐myristate 13‐acetate, an activator of protein kinase C (PKC), was absent in TRPV1 KO animals showing that PKC activation elicits nociception exclusively through TRPV1 receptor sensitization/activation. Thermal hyperalgesia (drop of noxious heat threshold) and mechanical hyperalgesia induced by a mild heat injury (51 °C, 15 s) was smaller in KO mice suggesting a pronociceptive role for TRPV1 receptor in burn injury. Chronic mechanical hyperalgesia evoked by streptozotocin‐induced diabetic and cisplatin‐evoked toxic polyneuropathy occurred earlier and were greater in the TRPV1 KO group. In both polyneuropathy models, at time points when maximal difference in mechanical hyperalgesia between the two groups was measured, plasma somatostatin concentrations determined by radioimmunoassay significantly increased in WT but not in TRPV1 KO mice. It is concluded that sensitization/activation of the TRPV1 receptor plays a pronociceptive role in certain models of acute tissue injury but under chronic polyneuropathic conditions it can initiate antinociceptive counter‐regulatory mechanisms possibly mediated by somatostatin released from sensory neurons.


Neurobiology of Disease | 2012

Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice

Adrienn Markovics; Viktória Kormos; Balázs Gaszner; Arvin Lashgarara; Éva Szoke; Katalin Sándor; Krisztina Szabadfi; János Tajti; János Szolcsányi; Erika Pintér; Hitoshi Hashimoto; József Kun; Dora Reglodi; Zsuzsanna Helyes

Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (PAC1, VPAC) are present in sensory neurons and vascular smooth muscle. PACAP infusion was found to trigger migraine-like headache in humans and we showed its central pro-nociceptive function in several mouse pain models. Nitroglycerol (NTG)-induced pathophysiological changes were investigated in this study in PACAP gene-deleted (PACAP(-/-)) and wildtype (PACAP(+/+)) mice. Chemical activation of the trigeminovascular system was induced by 10 mg/kg i.p. NTG. Light-aversive behavior was determined in a light-dark box, meningeal microcirculation by laser Doppler blood perfusion scanning and the early neuronal activation marker c-Fos with immunohistochemistry. NTG-induced photophobia both in the early (0-30 min) and late phases (90-120 min) due to direct vasodilation and trigeminal sensitization, respectively, was significantly reduced in PACAP(-/-) mice. Meningeal blood flow increased by 30-35% during 4 h in PACAP(+/+) mice, but only a 5-10% elevation occurred from the second hour in PACAP(-/-) ones. The number of c-Fos expressing cells referring to neuronal activation in the trigeminal ganglia and nucleus caudalis significantly increased 4h after NTG in PACAP(+/+), but not in PACAP(-/-) animals. Similar PAC1 receptor immunostaining was detected in both groups, which did not change 4 h after NTG treatment. PACAP-38 (300 μg/kg, i.p.) produced photophobia similarly to NTG and 30% meningeal vasodilatation for 30 min in PACAP(+/+), but not in PACAP(-/-) mice. It significantly increased neural activation 4h later in the trigeminal ganglia of both groups, but in the nucleus caudalis of only the PACAP(+/+) mice. We provide the first experimental results that PACAP is a pivotal mediator of trigeminovascular activation/sensitization and meningeal vasodilation related to migraine.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Impaired defense mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice

Zsuzsanna Helyes; Erika Pintér; Katalin Sándor; Krisztián Elekes; Ágnes Bánvölgyi; Daniel Keszthelyi; Éva Szoke; Dániel Márton Tóth; Zoltán Sándor; László Kereskai; Gabor Pozsgai; Jeremy P. Allen; Piers C. Emson; Adrienn Markovics; János Szolcsányi

We have shown that somatostatin released from activated capsaicin-sensitive nociceptive nerve endings during inflammatory processes elicits systemic anti-inflammatory and analgesic effects. With the help of somatostatin receptor subtype 4 gene–deleted mice (sst4−/−), we provide here several lines of evidence that this receptor has a protective role in a variety of inflammatory disease models; several symptoms are more severe in the sst4 knockout animals than in their wild-type counterparts. Acute carrageenan-induced paw edema and mechanical hyperalgesia, inflammatory pain in the early phase of adjuvant-evoked chronic arthritis, and oxazolone-induced delayed-type hypersensitivity reaction in the skin are much greater in mice lacking the sst4 receptor. Airway inflammation and consequent bronchial hyperreactivity elicited by intranasal lipopolysaccharide administration are also markedly enhanced in sst4 knockouts, including increased perivascular/peribronchial edema, neutrophil/macrophage infiltration, mucus-producing goblet cell hyperplasia, myeloperoxidase activity, and IL-1β, TNF-α, and IFN-γ expression in the inflamed lung. It is concluded that during these inflammatory conditions the released somatostatin has pronounced counterregulatory effects through sst4 receptor activation. Thus, this receptor is a promising novel target for developing anti-inflammatory, analgesic, and anti-asthmatic drugs.


British Journal of Pharmacology | 2006

Effects of the somatostatin receptor subtype 4 selective agonist J-2156 on sensory neuropeptide release and inflammatory reactions in rodents

Z. Helyes; Erika Pintér; József Németh; Katalin Sándor; Krisztián Elekes; Árpád Szabó; Gabor Pozsgai; Daniel Keszthelyi; László Kereskai; M Engström; S Wurster; János Szolcsányi

Substance P (SP) and calcitonin gene‐related peptide (CGRP) released from capsaicin‐sensitive sensory nerves induce local neurogenic inflammation; somatostatin exerts systemic anti‐inflammatory actions presumably via sst4/sst1 receptors. This study investigates the effects of a high affinity, sst4‐selective, synthetic agonist, J‐2156, on sensory neuropeptide release in vitro and inflammatory processes in vivo.


Pain | 2009

Divergent peripheral effects of pituitary adenylate cyclase-activating polypeptide-38 on nociception in rats and mice

Katalin Sándor; Kata Bölcskei; Jason J. McDougall; Niklas Schuelert; Dóra Reglődi; Krisztián Elekes; Gábor Pethő; Erika Pintér; János Szolcsányi; Zsuzsanna Helyes

Abstract Pituitary adenylate cyclase‐activating polypeptide‐38 (PACAP‐38) and its receptors have been shown in the spinal dorsal horn, on capsaicin‐sensitive sensory neurons and inflammatory cells. The role of PACAP in central pain transmission is controversial, and no data are available on its function in peripheral nociception. Therefore, the aim of the present study was to analyze the effects of locally or systemically administered PACAP‐38 on nocifensive behaviors, inflammatory/neuropathic hyperalgesia and afferent firing. Intraplantar PACAP‐38 (0.2 nmol) injection inhibited carrageenan‐evoked inflammatory mechanical allodynia, mild heat injury‐induced thermal hyperalgesia, as well as nocifensive behaviors in the early and late phases of the formalin test in rats. However, the above dose did not alter basal mechanical or heat thresholds. In mice, PACAP‐38 (0.2 nmol/kg s.c.) significantly diminished acetic acid‐induced abdominal contractions, but exerted no effect on sciatic nerve ligation‐induced neuropathic mechanical hyperalgesia. In contrast, local PACAP‐38 injection markedly increased rotation‐induced afferent firing in the inflamed rat knee joint clearly demonstrating a peripheral sensitization in this organ. These actions were blocked by VPAC1/VPAC2 receptor antagonist pretreatment, but were not altered by PAC1 receptor antagonism. This paper presents the first data for the peripheral actions of PACAP‐38 on nociceptive transmission mediated by VPAC receptors. These effects seem to be divergent depending on the mechanisms of nociceptor activation and the targets of PACAP actions. In acute somatic and visceral inflammatory pain models, PACAP exerts anti‐nociceptive, anti‐hyperalgesic and anti‐allodynic effects. It has no significant peripheral role in traumatic mononeuropathy, but induces mechanical sensitization of knee joint primary afferents.


Regulatory Peptides | 2007

Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse

Krisztián Elekes; Zsuzsanna Helyes; József Németh; Katalin Sándor; Gabor Pozsgai; László Kereskai; Rita Börzsei; Erika Pintér; Árpád Szabó; János Szolcsányi

Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive afferents induce neurogenic inflammation via NK(1), NK(2) and CGRP1 receptor activation. This study examines the role of capsaicin-sensitive fibres and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological and biochemical techniques in mice. Carbachol-induced bronchoconstriction was measured with whole body plethysmography 24 h after intranasal lipopolysaccharide administration. SP and CGRP were determined with radioimmunoassay, myeloperoxidase activity with spectrophotometry, interleukin-1beta with ELISA and histopathological changes with semiquantitative scoring from lung samples. Treatments with resiniferatoxin for selective destruction of capsaicin-sensitive afferents, NK(1) antagonist SR 140333, NK(2) antagonist SR 48968, their combination, or CGRP1 receptor antagonist CGRP(8-37) were performed. Lipopolysaccharide significantly increased lung SP and CGRP concentrations, which was prevented by resiniferatoxin pretreatment. Resiniferatoxin-desensitization markedly enhanced inflammation, but decreased bronchoconstriction. CGRP(8-37) or combination of SR 140333 and SR 48968 diminished neutrophil accumulation, MPO levels and IL-1beta production, airway hyperresponsiveness was inhibited only by SR 48968. This is the first evidence that capsaicin-sensitive afferents exert a protective role in endotoxin-induced airway inflammation, but contribute to increased bronchoconstriction. Activation of CGRP1 receptors or NK(1)+NK(2) receptors participate in granulocyte accumulation, but NK(2) receptors play predominant role in enhanced airway resistance.


Peptides | 2011

Pituitary adenylate cyclase-activating polypeptide plays an anti-inflammatory role in endotoxin-induced airway inflammation: In vivo study with gene-deleted mice

Krisztián Elekes; Katalin Sándor; Andras Moricz; László Kereskai; Ágnes Kemény; Éva Szoke; Anikó Perkecz; Dora Reglodi; Hitoshi Hashimoto; Erika Pintér; János Szolcsányi; Zsuzsanna Helyes

The presence of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in capsaicin-sensitive peptidergic sensory nerves, inflammatory and immune cells suggest its involvement in inflammation. However, data on its role in different inflammatory processes are contradictory and there is little known about its functions in the airways. Therefore, our aim was to examine intranasal endotoxin-induced subacute airway inflammation in PACAP gene-deficient (PACAP⁻/⁻) and wild-type (PACAP⁺/⁺) mice. Airway responsiveness to inhaled carbachol was determined in unrestrained mice with whole body plethysmography 6 h and 24 h after LPS. Myeloperoxidase (MPO) activity referring to the number of accumulated neutrophils and macrophages was measured with spectrophotometry and interleukin-1β (IL-1β) concentration with ELISA from the lung homogenates. Histological evaluation and semiquantitative scoring were also performed. Bronchial responsiveness, as well as IL-1β concentration and MPO activity markedly increased at both timepoints. Perivascular edema dominated the histological picture at 6 h, while remarkable peribronchial granulocyte accumulation, macrophage infiltration and goblet cell hyperplasia were seen at 24h. In PACAP⁻/⁻ mice, airway hyperreactivity was significantly higher 24 h after LPS and inflammatory histopathological changes were more severe at both timepoints. MPO increase was almost double in PACAP⁻/⁻ mice compared to the wild-types at 6 h. In contrast, there was no difference between the IL-1β concentrations of the PACAP⁺/⁺ and PACAP⁻/⁻ mice. These results provide evidence for a protective role for PACAP in endotoxin-induced airway inflammation and hyperreactivity.


European Journal of Pain | 2010

Involvement of transient receptor potential vanilloid 1 receptors in protease‐activated receptor‐2‐induced joint inflammation and nociception

Z. Helyes; Katalin Sándor; É. Borbély; Valéria Tékus; E. Pintér; K. Elekes; D.M. Tóth; János Szolcsányi; J.J. McDougall

Protease‐activated receptor‐2 (PAR‐2) is a G‐protein‐coupled receptor activated through proteolytic cleavage. It is localized on epithelial, endothelial and inflammatory cells, as well as on transient receptor potential vanilloid 1 (TRPV1) receptor‐expressing neurones. It plays an important role in inflammatory/nociceptive processes. Since there are few reports concerning PAR‐2 function in joints, the effects of intraarticular PAR‐2 activation on joint pain and inflammation were studied. Secondary hyperalgesia/allodynia, spontaneous weight distribution, swelling and inflammatory cytokine production were measured and the involvement of TRPV1 ion channels was investigated in rats and mice. Injection of the PAR‐2 receptor agonist SLIGRL‐NH2 into the knee decreased touch sensitivity and weight bearing of the ipsilateral hindlimb in both species. Secondary mechanical allodynia/hyperalgesia and impaired weight distribution were significantly reduced by the TRPV1 antagonist SB366791 in rats and by the genetic deletion of this receptor in mice. PAR‐2 activation did not cause significant joint swelling, but increased IL‐1β concentration which was not influenced by the lack of the TRPV1 channel. For comparison, intraplantar SLIGRL‐NH2 evoked similar primary mechanical hyperalgesia and impaired weight distribution in both WT and TRPV1 deficient mice, but oedema was smaller in the knockouts. The inactive peptide, LRGILS‐NH2, injected into either site did not induce any inflammatory or nociceptive changes. These data provide evidence for a significant role of TRPV1 receptors in secondary mechanical hyperalgesia/allodynia and spontaneous pain induced by PAR‐2 receptor activation in the knee joint. Although intraplantar PAR‐2 activation‐induced oedema is also TRPV1 receptor‐mediated, primary mechanical hyperalgesia, impaired weight distribution and IL‐1β production are independent of this channel.


Neuropeptides | 2010

Impaired nocifensive behaviours and mechanical hyperalgesia, but enhanced thermal allodynia in pituitary adenylate cyclase-activating polypeptide deficient mice.

Katalin Sándor; Viktória Kormos; Bálint Botz; A. Imreh; Kata Bölcskei; Balázs Gaszner; Adrienn Markovics; János Szolcsányi; Norihito Shintani; Hitoshi Hashimoto; Akemichi Baba; Dora Reglodi; Z. Helyes

Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) and its receptors (PAC1 and VPAC) have been shown in the spinal dorsal horn, dorsal root ganglia and sensory nerve terminals. Data concerning the role of PACAP in central pain transmission are controversial and we have recently published its divergent peripheral effects on nociceptive processes. The aim of the present study was to investigate acute somatic and visceral nocifensive behaviours, partial sciatic nerve ligation-evoked chronic neuropathic, as well as resiniferatoxin-induced inflammatory thermal and mechanical hyperalgesia in PACAP deficient (PACAP(-/-)) mice to elucidate its overall function in pain transmission. Neuronal activation was investigated with c-Fos immunohistochemistry. Paw lickings in the early (0-5 min) and late (20-45 min) phases of the formalin test were markedly reduced in PACAP(-/-) mice. Acetic acid-evoked abdominal contractions referring to acute visceral chemonociception was also significantly attenuated in PACAP knockout animals. In both models, the excitatory role of PACAP was supported by markedly greater c-Fos expression in the periaqueductal grey and the somatosensory cortex. In PACAP-deficient animals neuropathic mechanical hyperalgesia was absent, while c-Fos immunopositivity 20 days after the operation was significantly higher. In this chronic model, these neurons are likely to indicate the activation of secondary inhibitory pathways. Intraplantarly injected resiniferatoxin-evoked mechanical hyperalgesia involving both peripheral and central processes was decreased, but thermal allodynia mediated by only peripheral mechanisms was increased in PACAP(-/-) mice. These data clearly demonstrate an overall excitatory role of PACAP in pain transmission originating from both exteroceptive and interoceptive areas, it is also involved in central sensitization. This can be explained by the signal transduction mechanisms of its identified receptors, both PAC1 and VPAC activation leads to neuronal excitation. In contrast, it is an inhibitory mediator at the level of the peripheral sensory nerve endings and decreases their sensitization to heat with presently unknown mechanisms.


Neuropeptides | 2010

Involvement of preprotachykinin A gene-encoded peptides and the neurokinin 1 receptor in endotoxin-induced murine airway inflammation

Zsuzsanna Helyes; Krisztián Elekes; Katalin Sándor; István Szitter; László Kereskai; Erika Pintér; Ágnes Kemény; János Szolcsányi; Lynn McLaughlin; Sylvia A. Vasiliou; Anja Kipar; Andreas Zimmer; Stephen P. Hunt; James P. Stewart; John P. Quinn

Tachykinins encoded by the preprotachykinin A (TAC1) gene such as substance P (SP) and neurokinin A (NKA) are involved in neurogenic inflammatory processes via predominantly neurokinins 1 and 2 (NK1 and NK2) receptor activation, respectively. Endokinins and hemokinins encoded by the TAC4 gene also have remarkable selectivity and potency for the NK1 receptors and might participate in inflammatory cell functions. The aim of the present study was to investigate endotoxin-induced airway inflammation and consequent bronchial hyper-reactivity in TAC1(-/-), NK1(-/-) and also in double knockout (TAC1(-/-)/NK1(-/-)) mice. Sub-acute interstitial lung inflammation was evoked by intranasal Escherichia coli lipopolysaccharide (LPS) in the knockout mice and their wildtype C57BL/6 counterparts 24 h before measurement. Respiratory parameters were measured with unrestrained whole body plethysmography. Bronchoconstriction was induced by inhalation of the muscarinic receptor agonist carbachol and Penh (enhanced pause) correlating with airway resistance was calculated. Lung interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) concentrations were measured with ELISA. Histological evaluation was performed and a composite morphological score was determined. Myeloperoxidase (MPO) activity in the lung was measured with spectrophotometry to quantify the number of infiltrating neutrophils/macrophages. Airway hyper-reactivity was significantly reduced in the TAC1(-/-) as well as the TAC1(-/-)/NK1(-/-) groups. However, LPS-induced histological inflammatory changes (perivascular/peribronchial oedema, neutrophil infiltration and goblet cell hyperplasia), MPO activity and TNF-alpha concentration were markedly diminished only in TAC1(-/-) mice. Interestingly, the concentrations of both cytokines, IL-1beta and TNF-alpha, were significantly greater in the NK1(-/-) group. These data clearly demonstrated on the basis of histology, MPO and cytokine measurements that TAC1 gene-derived tachykinins, SP and NKA, play a significant role in the development of endotoxin-induced murine airway inflammation, but not solely via NK1 receptor activation. However, in inflammatory bronchial hyper-responsiveness other tachykinins, such as hemokinin-1 acting through NK1 receptors also might be involved.

Collaboration


Dive into the Katalin Sándor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge