Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krisztián Elekes is active.

Publication


Featured researches published by Krisztián Elekes.


Pain | 2005

Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice.

Kata Bölcskei; Zsuzsanna Helyes; Árpád Szabó; Katalin Sándor; Krisztián Elekes; József Németh; Róbert Almási; Erika Pintér; Gábor Petho; János Szolcsányi

&NA; Capsaicin‐sensitive, TRPV1 (transient receptor potential vanilloid 1) receptor‐expressing primary sensory neurons exert local and systemic efferent effects besides the classical afferent function. The TRPV1 receptor is considered a molecular integrator of various physico‐chemical noxious stimuli. In the present study its role was analysed in acute nociceptive tests and chronic neuropathy models by comparison of wild‐type (WT) and TRPV1 knockout (KO) mice. The formalin‐induced acute nocifensive behaviour, carrageenan‐evoked inflammatory mechanical hyperalgesia and partial sciatic nerve lesion‐induced neuropathic mechanical hyperalgesia were not different in WT and KO animals. Acute nocifensive behaviour after intraplantar injection of phorbol 12‐myristate 13‐acetate, an activator of protein kinase C (PKC), was absent in TRPV1 KO animals showing that PKC activation elicits nociception exclusively through TRPV1 receptor sensitization/activation. Thermal hyperalgesia (drop of noxious heat threshold) and mechanical hyperalgesia induced by a mild heat injury (51 °C, 15 s) was smaller in KO mice suggesting a pronociceptive role for TRPV1 receptor in burn injury. Chronic mechanical hyperalgesia evoked by streptozotocin‐induced diabetic and cisplatin‐evoked toxic polyneuropathy occurred earlier and were greater in the TRPV1 KO group. In both polyneuropathy models, at time points when maximal difference in mechanical hyperalgesia between the two groups was measured, plasma somatostatin concentrations determined by radioimmunoassay significantly increased in WT but not in TRPV1 KO mice. It is concluded that sensitization/activation of the TRPV1 receptor plays a pronociceptive role in certain models of acute tissue injury but under chronic polyneuropathic conditions it can initiate antinociceptive counter‐regulatory mechanisms possibly mediated by somatostatin released from sensory neurons.


Neuroscience Letters | 2005

Effects of the novel TRPV1 receptor antagonist SB366791 in vitro and in vivo in the rat

Angelika Varga; József Németh; Árpád Szabó; Jason J. McDougall; Chunfen Zhang; Krisztián Elekes; Erika Pintér; János Szolcsányi; Zsuzsanna Helyes

The TRPV1 capsaicin receptor is a non-selective cation channel localized in the cell membrane of a subset of primary sensory neurons and functions as an integrator molecule in nociceptive/inflammatory processes. The present paper characterizes the effects of SB366791, a novel TRPV1 antagonist, on capsaicin-evoked responses both in vitro and in vivo using rat models. SB366791 (100 and 500 nM) significantly inhibited capsaicin-evoked release of the pro-inflammatory sensory neuropeptide substance P from isolated tracheae, while it did not influence electrically induced neuropeptide release. It also decreased capsaicin-induced Ca2+ influx in cultured trigeminal ganglion cells in a concentration-dependent manner (0.5-10 microM) with an IC50 of 651.9 nM. In vivo 500 microg/kg i.p. dose of SB366791 significantly inhibited capsaicin-induced hypothermia, wiping movements and vasodilatation in the knee joint, while 2 mg/kg capsazepine was ineffective, its effect lasted for 1h. However, neither antagonist was able to inhibit capsaicin-evoked hypothermia in Balb/c mice. Based on these data SB366791 is a more selective and in vivo also a more potent TRPV1 receptor antagonist than capsazepine in the rat therefore, it may promote the assessment of the therapeutic utility of TRPV1 channel blockers.


Neuroscience | 2006

Effect of pituitary adenylate cyclase activating polypeptide-38 on sensory neuropeptide release and neurogenic inflammation in rats and mice

József Németh; Dora Reglödi; Gabor Pozsgai; Árpád Szabó; Krisztián Elekes; Erika Pintér; János Szolcsányi; Z. Helyes

Substance P (SP) and calcitonin gene-related peptide (CGRP), released from capsaicin-sensitive sensory nerves induce local neurogenic inflammation, while somatostatin exerts systemic anti-inflammatory actions. The aim of the present study was to investigate the release of pituitary adenylate cyclase activating polypeptide-38 (PACAP-38) and its effects on sensory neuropeptide release in vitro and acute neurogenic ear swelling in vivo. Capsaicin (10(-6) M) or electrical field stimulation (EFS; 40 V, 0.1 ms, 10 Hz, 120 s; 1200 impulses)-induced release of PACAP-38, SP, CGRP and somatostatin from isolated rat tracheae was measured with radioimmunoassay. Mustard oil-induced neurogenic inflammation in the mouse ear was determined with a micrometer and in the rat hind paw skin by the Evans Blue leakage technique. Capsaicin and EFS evoked 27% and more than twofold elevation of PACAP-38 release respectively, compared with the prestimulated basal values from isolated trachea preparation. Exogenously administered PACAP-38 (20-2000 nM) diminished both capsaicin- and EFS-evoked sensory neuropeptide release in a concentration-dependent manner. The maximal inhibitory effects of PACAP on capsaicin-induced substance P, CGRP and somatostatin release amounted to 75.4%, 73.3% and 90.0%, while EFS-evoked release of these peptides was 80.03%, 87.7% and 67.7%. In case of capsaicin stimulation the EC50 values for substance P, CGRP and somatostatin were 82.9 nM, 60.1 nM and 66.9 nM, respectively. When EFS was performed, these corresponding EC50 data were 92.1 nM, 67.8 nM and 20.9 nM. PACAP-38 (10, 100 and 1000 microg/kg i.p. in 200 microl volume) inhibited neurogenic ear swelling in the mouse. Furthermore, 100 microg/kg i.p. PACAP also significantly diminished mustard oil-evoked plasma protein extravasation in the rat skin. These results suggest that PACAP-38 is released from the stimulated peripheral terminals of capsaicin-sensitive afferents and it is able to inhibit the outflow of sensory neuropeptides. Based on this mechanism of action PACAP is also able to effectively diminish/abolish neurogenic inflammatory response in vivo after systemic administration.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Impaired defense mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice

Zsuzsanna Helyes; Erika Pintér; Katalin Sándor; Krisztián Elekes; Ágnes Bánvölgyi; Daniel Keszthelyi; Éva Szoke; Dániel Márton Tóth; Zoltán Sándor; László Kereskai; Gabor Pozsgai; Jeremy P. Allen; Piers C. Emson; Adrienn Markovics; János Szolcsányi

We have shown that somatostatin released from activated capsaicin-sensitive nociceptive nerve endings during inflammatory processes elicits systemic anti-inflammatory and analgesic effects. With the help of somatostatin receptor subtype 4 gene–deleted mice (sst4−/−), we provide here several lines of evidence that this receptor has a protective role in a variety of inflammatory disease models; several symptoms are more severe in the sst4 knockout animals than in their wild-type counterparts. Acute carrageenan-induced paw edema and mechanical hyperalgesia, inflammatory pain in the early phase of adjuvant-evoked chronic arthritis, and oxazolone-induced delayed-type hypersensitivity reaction in the skin are much greater in mice lacking the sst4 receptor. Airway inflammation and consequent bronchial hyperreactivity elicited by intranasal lipopolysaccharide administration are also markedly enhanced in sst4 knockouts, including increased perivascular/peribronchial edema, neutrophil/macrophage infiltration, mucus-producing goblet cell hyperplasia, myeloperoxidase activity, and IL-1β, TNF-α, and IFN-γ expression in the inflamed lung. It is concluded that during these inflammatory conditions the released somatostatin has pronounced counterregulatory effects through sst4 receptor activation. Thus, this receptor is a promising novel target for developing anti-inflammatory, analgesic, and anti-asthmatic drugs.


Peptides | 2007

Inhibitory effect of PACAP-38 on acute neurogenic and non-neurogenic inflammatory processes in the rat.

Z. Helyes; Gabor Pozsgai; Rita Börzsei; József Németh; Teréz Bagoly; László Márk; Erika Pintér; Gábor K. Tóth; Krisztián Elekes; János Szolcsányi; Dora Reglödi

Inhibitory actions of pituitary adenylate cyclase activating polypeptide (PACAP) have been described on cellular/vascular inflammatory components, but there are few data concerning its role in neurogenic inflammation. In this study we measured PACAP-like immunoreactivity with radioimmunoassay in the rat plasma and showed a two-fold elevation in response to systemic stimulation of capsaicin-sensitive sensory nerves by resiniferatoxin, but not after local excitation of cutaneous afferents. Neurogenic plasma extravasation in the plantar skin induced by intraplantar capsaicin or resiniferatoxin, as well as carrageenan-induced paw edema were significantly diminished by intraperitoneal PACAP-38. In summary, these results demonstrate that PACAP is released from activated capsaicin-sensitive afferents into the systemic circulation. It diminishes acute pure neurogenic and mixed-type inflammatory reactions via inhibiting pro-inflammatory mediator release and/or by acting at post-junctional targets on the vascular endothelium.


British Journal of Pharmacology | 2006

Effects of the somatostatin receptor subtype 4 selective agonist J-2156 on sensory neuropeptide release and inflammatory reactions in rodents

Z. Helyes; Erika Pintér; József Németh; Katalin Sándor; Krisztián Elekes; Árpád Szabó; Gabor Pozsgai; Daniel Keszthelyi; László Kereskai; M Engström; S Wurster; János Szolcsányi

Substance P (SP) and calcitonin gene‐related peptide (CGRP) released from capsaicin‐sensitive sensory nerves induce local neurogenic inflammation; somatostatin exerts systemic anti‐inflammatory actions presumably via sst4/sst1 receptors. This study investigates the effects of a high affinity, sst4‐selective, synthetic agonist, J‐2156, on sensory neuropeptide release in vitro and inflammatory processes in vivo.


Pain | 2009

Divergent peripheral effects of pituitary adenylate cyclase-activating polypeptide-38 on nociception in rats and mice

Katalin Sándor; Kata Bölcskei; Jason J. McDougall; Niklas Schuelert; Dóra Reglődi; Krisztián Elekes; Gábor Pethő; Erika Pintér; János Szolcsányi; Zsuzsanna Helyes

Abstract Pituitary adenylate cyclase‐activating polypeptide‐38 (PACAP‐38) and its receptors have been shown in the spinal dorsal horn, on capsaicin‐sensitive sensory neurons and inflammatory cells. The role of PACAP in central pain transmission is controversial, and no data are available on its function in peripheral nociception. Therefore, the aim of the present study was to analyze the effects of locally or systemically administered PACAP‐38 on nocifensive behaviors, inflammatory/neuropathic hyperalgesia and afferent firing. Intraplantar PACAP‐38 (0.2 nmol) injection inhibited carrageenan‐evoked inflammatory mechanical allodynia, mild heat injury‐induced thermal hyperalgesia, as well as nocifensive behaviors in the early and late phases of the formalin test in rats. However, the above dose did not alter basal mechanical or heat thresholds. In mice, PACAP‐38 (0.2 nmol/kg s.c.) significantly diminished acetic acid‐induced abdominal contractions, but exerted no effect on sciatic nerve ligation‐induced neuropathic mechanical hyperalgesia. In contrast, local PACAP‐38 injection markedly increased rotation‐induced afferent firing in the inflamed rat knee joint clearly demonstrating a peripheral sensitization in this organ. These actions were blocked by VPAC1/VPAC2 receptor antagonist pretreatment, but were not altered by PAC1 receptor antagonism. This paper presents the first data for the peripheral actions of PACAP‐38 on nociceptive transmission mediated by VPAC receptors. These effects seem to be divergent depending on the mechanisms of nociceptor activation and the targets of PACAP actions. In acute somatic and visceral inflammatory pain models, PACAP exerts anti‐nociceptive, anti‐hyperalgesic and anti‐allodynic effects. It has no significant peripheral role in traumatic mononeuropathy, but induces mechanical sensitization of knee joint primary afferents.


Regulatory Peptides | 2007

Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse

Krisztián Elekes; Zsuzsanna Helyes; József Németh; Katalin Sándor; Gabor Pozsgai; László Kereskai; Rita Börzsei; Erika Pintér; Árpád Szabó; János Szolcsányi

Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive afferents induce neurogenic inflammation via NK(1), NK(2) and CGRP1 receptor activation. This study examines the role of capsaicin-sensitive fibres and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological and biochemical techniques in mice. Carbachol-induced bronchoconstriction was measured with whole body plethysmography 24 h after intranasal lipopolysaccharide administration. SP and CGRP were determined with radioimmunoassay, myeloperoxidase activity with spectrophotometry, interleukin-1beta with ELISA and histopathological changes with semiquantitative scoring from lung samples. Treatments with resiniferatoxin for selective destruction of capsaicin-sensitive afferents, NK(1) antagonist SR 140333, NK(2) antagonist SR 48968, their combination, or CGRP1 receptor antagonist CGRP(8-37) were performed. Lipopolysaccharide significantly increased lung SP and CGRP concentrations, which was prevented by resiniferatoxin pretreatment. Resiniferatoxin-desensitization markedly enhanced inflammation, but decreased bronchoconstriction. CGRP(8-37) or combination of SR 140333 and SR 48968 diminished neutrophil accumulation, MPO levels and IL-1beta production, airway hyperresponsiveness was inhibited only by SR 48968. This is the first evidence that capsaicin-sensitive afferents exert a protective role in endotoxin-induced airway inflammation, but contribute to increased bronchoconstriction. Activation of CGRP1 receptors or NK(1)+NK(2) receptors participate in granulocyte accumulation, but NK(2) receptors play predominant role in enhanced airway resistance.


Peptides | 2011

Pituitary adenylate cyclase-activating polypeptide plays an anti-inflammatory role in endotoxin-induced airway inflammation: In vivo study with gene-deleted mice

Krisztián Elekes; Katalin Sándor; Andras Moricz; László Kereskai; Ágnes Kemény; Éva Szoke; Anikó Perkecz; Dora Reglodi; Hitoshi Hashimoto; Erika Pintér; János Szolcsányi; Zsuzsanna Helyes

The presence of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in capsaicin-sensitive peptidergic sensory nerves, inflammatory and immune cells suggest its involvement in inflammation. However, data on its role in different inflammatory processes are contradictory and there is little known about its functions in the airways. Therefore, our aim was to examine intranasal endotoxin-induced subacute airway inflammation in PACAP gene-deficient (PACAP⁻/⁻) and wild-type (PACAP⁺/⁺) mice. Airway responsiveness to inhaled carbachol was determined in unrestrained mice with whole body plethysmography 6 h and 24 h after LPS. Myeloperoxidase (MPO) activity referring to the number of accumulated neutrophils and macrophages was measured with spectrophotometry and interleukin-1β (IL-1β) concentration with ELISA from the lung homogenates. Histological evaluation and semiquantitative scoring were also performed. Bronchial responsiveness, as well as IL-1β concentration and MPO activity markedly increased at both timepoints. Perivascular edema dominated the histological picture at 6 h, while remarkable peribronchial granulocyte accumulation, macrophage infiltration and goblet cell hyperplasia were seen at 24h. In PACAP⁻/⁻ mice, airway hyperreactivity was significantly higher 24 h after LPS and inflammatory histopathological changes were more severe at both timepoints. MPO increase was almost double in PACAP⁻/⁻ mice compared to the wild-types at 6 h. In contrast, there was no difference between the IL-1β concentrations of the PACAP⁺/⁺ and PACAP⁻/⁻ mice. These results provide evidence for a protective role for PACAP in endotoxin-induced airway inflammation and hyperreactivity.


Neuroscience | 2008

INHIBITORY ACTION OF ENDOMORPHIN-1 ON SENSORY NEUROPEPTIDE RELEASE AND NEUROGENIC INFLAMMATION IN RATS AND MICE

Rita Börzsei; Gabor Pozsgai; Teréz Bagoly; Krisztián Elekes; Erika Pintér; János Szolcsányi; Z. Helyes

Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive sensory nerves induce local neurogenic inflammation in the innervated area. The aim of the present study was to investigate the effects of an endogenous opioid peptide, endomorphin-1, on sensory neuropeptide release in vitro and acute neurogenic and non-neurogenic inflammatory reactions in vivo. Electrical field stimulation (EFS; 40 V, 0.1 ms, 10 Hz, 120 s; 1200 impulses) was performed to evoke SP and CGRP release from peptidergic afferents of the isolated rat tracheae which was determined from the incubation medium with radioimmunoassay. Neurogenic inflammation in the skin of the acutely denervated rat hind paw was induced by topical application of 1% mustard oil and detected by Evans Blue leakage. Mustard oil-induced ear swelling of the mouse was determined with a micrometer during 3 h and myeloperoxidase activity as an indicator of granulocyte accumulation was measured with spectrophotometry at 6 h. EFS evoked about a twofold elevation in the release of both pro-inflammatory sensory neuropeptides. Endomorphin-1 (5 nM-2 microM) diminished the release of SP and CGRP in a concentration-dependent manner, the EC50 values were 39.45 nM and 10.84 nM, respectively. The maximal inhibitory action was about 80% in both cases. Administration of endomorphin-1 (1-100 microg/kg i.p.) dose-dependently inhibited mustard oil-evoked neurogenic plasma protein extravasation in the rat skin as determined by microg Evans Blue per g wet tissue. Repeated i.p. injections of the 10 microg/kg dose three times per day for 10 days did not induce desensitization in this model. Neurogenic swelling of the mouse ear was also dose-dependently diminished by 1-100 microg/kg i.p. endomorphin-1, but non-neurogenic neutrophil accumulation was not influenced. These results suggest that endomorphin-1 is able to inhibit the outflow of pro-inflammatory sensory neuropeptides. Based on this mechanism of action it is also able to effectively diminish neurogenic inflammatory responses in vivo.

Collaboration


Dive into the Krisztián Elekes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge