Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Cholewa-Kowalska is active.

Publication


Featured researches published by Katarzyna Cholewa-Kowalska.


Journal of Biomedical Materials Research | 2000

Gel‐derived materials of a CaO‐P2O5‐SiO2 system modified by boron, sodium, magnesium, aluminum, and fluorine compounds

Maria Laczka; Katarzyna Cholewa-Kowalska; Anna Laczka-Osyczka; Magdalena Tworzydło; Bogdan Turyna

Bioactive glass-ceramic materials of the CaO-P(2)O(5)-SiO(2) system modified by adding boron, magnesium, sodium, fluorine, and aluminum were obtained using the sol-gel method. Gel-derived materials were produced in the pellet form obtained by compression of powders as well as in coatings on glass slides. The materials obtained were examined in vitro with regard to the ability of calcium phosphate layer to form on the material surface as the result of contact with simulated body fluid (SBF). SBF pH changes and calcium solubility in this solution were determined and scanning electron microscopy, energy-dispersive X-ray analysis, and infrared spectroscopy studies were conducted before and after contact of the materials with SBF. The gels modified by aluminum were amorphous, whereas the sodium and fluorine additives promoted the bulk crystallization of gel-derived materials. The ability of calcium phosphates to crystallize on the surface of gel-derived materials depended only slightly on the types of additives applied, and the character of this dependence was different from that observed in melted glasses. Moreover, to estimate the biocompatibility of gel-derived coatings, we examined the proliferation, collagen synthesis, adhesion, and morphology of fibroblasts (NRK cells) cultured in the presence of gel-derived materials. The results of these experiments showed that none of the tested materials significantly reduced any cell function.


Materials Science and Engineering: C | 2017

Biodegradable ceramic-polymer composites for biomedical applications: A review

Michal Dziadek; Ewa Stodolak-Zych; Katarzyna Cholewa-Kowalska

The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted.


Biomedical Materials | 2009

Gel-derived bioglass as a compound of hydroxyapatite composites.

Katarzyna Cholewa-Kowalska; Justyna Kokoszka; Maria Łączka; Łukasz Niedźwiedzki; Wojciech Madej; Anna M. Osyczka

Despite the excellent biocompatibility of hydroxyapatite and bioglass, their clinical applications are limited to non-load-bearing implants and implant coatings due to their low mechanical properties. We have developed two different composites made of hydroxyapatite (HA) and gel-derived bioglasses designated S2 (80 mol% SiO(2)-16 mol% CaO-4 mol% P(2)O(5)) or A2 (40 mol% SiO(2)-54 mol% CaO-6 mol% P(2)O(5)). We show that the combination of hydroxyapatite with either bioglass results in better composite bioactivity and biocompatibility compared to HA alone. We used a commercially available hydroxyapatite that was sintered with varying additions (10%, 50%) of A2 or S2 bioglass. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The elastic properties of bioglass/HA composites were analyzed with the use of the pulse ultrasonic technique. The bioactivity (surface activity) of the composites was assessed by determining the changes of surface morphology and composition after soaking in simulated body fluid (SBF) for 7 and 14 days. The biocompatibility of the obtained composites was then assessed in vitro using adult human bone marrow stromal cells. Cells were seeded on the material surfaces at a density of 10(4) cells cm(-2) and cultured for 7 days in non-differentiating and osteogenic conditions. The number of live cells was estimated in both standard and osteogenic cultures, followed by alkaline phosphatase (ALP) activity assay in osteogenic cultures. We determined that 10 wt% addition of A2 (E = 12.24 GPa) and 50 wt% addition of S2 (E = 16.96 GPa) to the HA base results in higher Youngs modulus of the composites compared to pure hydroxyapatite (E = 9.03 GPa). The rate of Ca-P rich layer formation is higher for bioglass/HA composites containing A2 bioglass compared to the composites containing S2 bioglass. Evaluation of cell growth on the bioglass/HA composites showed that the incorporation of either 50 wt% S2 or 50 wt% A2 into the hydroxyapatite base significantly improves cell viability when compared to cells grown on pure HA. Also the cellular activity of ALP, an early marker of osteoblasts, increases with the amount of bioglass addition to the composites.


Journal of Molecular Structure | 1999

Structural examinations of gel-derived materials of the CaO–P2O5–SiO2 system

M. Łączka; Katarzyna Cholewa-Kowalska; K. Kulgawczyk; M. Klisch; W. Mozgawa

Abstract The effect of the different CaO and P 2 O 5 precursors on the formation of gel-derived materials of CaO–P 2 O 5 –SiO 2 system as well as on the structure of these materials was determined. As the substrates introducing the particular oxides the following materials were used: Si(OC 2 H 5 ) 4 (TEOS); Ca(NO 3 ) 2 4H 2 O; Ca(OOCCH 3 ) 2 H 2 O; CaO dissolved in ethylene glycol, Ca dissolved in methoxyethanol, OP(OC 2 H 5 ) 3 , H 3 PO 4 , P 2 O 5 dissolved in izopropanol or izobutanol or methoxyethanol. The obtained gels were dried and heated up to the following temperatures: 200, 400, 600, 800 and 1000°C. Dried gels and gels after thermal treatment were examined by the X-ray diffraction spectroscopy. It has been found that the kind of CaO and P 2 O 5 precursors influences the progress of gel polymerisation as well as the ability of gels to crystallise and the type of crystallising phases.


Biomedical Materials | 2014

Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.

Joanna Filipowska; J Pawlik; Katarzyna Cholewa-Kowalska; Grzegorz Tylko; Elzbieta Pamula; L Niedzwiedzki; M Szuta; Maria Laczka; Anna M. Osyczka

In this study, 3D porous bioactive composite scaffolds were produced and evaluated for their physico-chemical and biological properties. Polymer poly-L-lactide-co-glycolide (PLGA) matrix scaffolds were modified with sol-gel-derived bioactive glasses (SBGs) of CaO-SiO2-P2O5 systems. We hypothesized that SBG incorporation into PLGA matrix would improve the chemical and biological activity of composite materials as well as their mechanical properties. We applied two bioactive glasses, designated as S2 or A2, differing in the content of SiO2 and CaO (i.e. 80 mol% SiO2, 16 mol% CaO for S2 and 40 mol% SiO2, 52 mol% CaO for A2). The composites were characterized for their porosity, bioactivity, microstructure and mechanical properties. The osteoinductive properties of these composites were evaluated in human bone marrow stromal cell (hBMSC) cultures grown in either standard growth medium or treated with recombinant human bone morphogenetic protein-2 (rhBMP-2) or dexamethasone (Dex). After incubation in simulated body fluid, calcium phosphate precipitates formed inside the pores of both A2-PLGA and S2-PLGA scaffolds. The compressive strength of the latter was increased slightly compared to PLGA. Both composites promoted superior hBMSC attachment to the material surface and stimulated the expression of several osteogenic markers in hBMSC compared to cells grown on unmodified PLGA. There were also marked differences in the response of hBMSC to composite scaffolds, depending on chemical compositions of the scaffolds and culture treatments. Compared to silica-rich S2-PLGA, hBMSC grown on calcium-rich A2-PLGA were overall less responsive to rhBMP-2 or Dex and the osteoinductive properties of these A2-PLGA scaffolds seemed partially dependent on their ability to induce BMP signaling in untreated hBMSC. Thus, beyond the ability of currently studied composites to enhance hBMSC osteogenesis, it may become possible to modulate the osteogenic response of hBMSC, depending on the chemistry of SBGs incorporated into polymer matrix.


Materials Science and Engineering: C | 2015

New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

Michal Dziadek; Elżbieta Menaszek; Barbara Zagrajczuk; Justyna Pawlik; Katarzyna Cholewa-Kowalska

Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Youngs modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Youngs modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher crystallinity increase (Δχc ~148% for 21S2-PCL, ~81% for 21A2-PCL) and weight loss (~17% for both) were found for composite materials, depending on SBG composition, in contrast to value variations for pure PCL film (Δχc ~43%, weight loss ~1.6%). Furthermore, it seems that both SBG could neutralize acidic degradation by-products of PCL at later incubation stages. Obtained SBG-PCL composites show excellent biocompatibility, support cell proliferation also may modulate cell response depending on the glass composition. The results indicate the possibility to use different contents and/or chemical compositions of SBG to obtain composite materials with various, but controlled, surface and mechanical properties as well as degradation kinetics.


Biomedical Materials | 2014

Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses

Timothy Douglas; Wojciech Piwowarczyk; Elzbieta Pamula; Jana Liskova; David Schaubroeck; Sander C. G. Leeuwenburgh; Gilles Brackman; Lieve Balcaen; Rainer Detsch; Heidi Declercq; Katarzyna Cholewa-Kowalska; Agnieszka Dokupil; Vincent M.J.I. Cuijpers; Frank Vanhaecke; Ria Cornelissen; Tom Coenye; Aldo R. Boccaccini; Peter Dubruel

Hydrogels of biocompatible calcium-crosslinkable polysaccharide gellan gum (GG) were enriched with bioglass particles to enhance (i) mineralization with calcium phosphate (CaP); (ii) antibacterial properties and (iii) growth of bone-forming cells for future bone regeneration applications. Three bioglasses were compared, namely one calcium-rich and one calcium-poor preparation both produced by a sol-gel technique (hereafter referred to as A2 and S2, respectively) and one preparation of composition close to that of the commonly used 45S5 type (hereafter referred to as NBG). Incubation in SBF for 7 d, 14 d and 21 d caused apatite formation in bioglass-containing but not in bioglass-free samples, as confirmed by FTIR, XRD, SEM, ICP-OES, and measurements of dry mass, i.e. mass attributable to polymer and mineral and not water. Mechanical testing revealed an increase in compressive modulus in samples containing S2 and NBG but not A2. Antibacterial testing using biofilm-forming meticillin-resistant staphylococcus aureus (MRSA) showed markedly higher antibacterial activity of samples containing A2 and S2 than samples containing NBG and bioglass-free samples. Cell biological characterization using rat mesenchymal stem cells (rMSCs) revealed a stimulatory effect of NBG on rMSC differentiation. The addition of bioglass thus promotes GG mineralizability and, depending on bioglass type, antibacterial properties and rMSC differentiation.


Journal of Biomedical Materials Research Part B | 2015

Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds.

Michal Dziadek; Justyna Pawlik; Elżbieta Menaszek; Ewa Stodolak-Zych; Katarzyna Cholewa-Kowalska

In this study, two different composition gel derived silica-rich (S2) or calcium-rich (A2) bioactive glasses (SBG) from a basic CaO-P2 O5 -SiO2 system were incorporated into poly(ε-caprolactone) (PCL) matrix to obtain novel bioactive composite scaffolds for bone tissue engineering applications. The composites were fabricated in the form of highly porous 3D scaffolds using following preparation methods: solvent casting particulate leaching (SCPL), solid-liquid phase separation, phase inversion (PI). Scaffolds containing 21% vol. of each bioactive glass were characterized for architecture, crystallinity, hydrolytic degradation, surface bioactivity, and cellular response. Results indicated that the use of different preparation methods leads to obtain highly porous (60-90%) materials with differentiated morphology: pore shape, size, and distributions. Thermal analysis (DSC) showed that the preparation method of materials and addition of bioactive glass particles into polymer matrix induced the changes of PCL crystallinity. Composites obtained by SCPL and PI method containing A2 SBG rapidly formed a hydroxyapatite calcium phosphate surface layer after incubation in SBF. Bioactive glasses used as filler in composite scaffolds could neutralize the released acidic by-products of the polymer degradation. Preliminary in vitro biological studies of the composites in contact with osteoblastic cells showed good biocompatibility of the obtained materials. Addition of bioactive glass into the PCL matrix promotes mineralization estimated on the basis of the ALP activity. These results suggest that through a process of selection appropriate methods of preparation and bioglass composition it is possible to design and obtain porous materials with suitable properties for regeneration of bone tissue.


Journal of Biomedical Materials Research Part A | 2016

High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels

Svetlana Gorodzha; Timothy Douglas; Sangram Keshari Samal; Rainer Detsch; Katarzyna Cholewa-Kowalska; Kevin Braeckmans; Aldo R. Boccaccini; Andre G. Skirtach; Venera Weinhardt; Tilo Baumbach; Maria A. Surmeneva; Roman A. Surmenev

Enrichment of hydrogels with inorganic particles improves their suitability for bone regeneration by enhancing their mechanical properties, mineralizability, and bioactivity as well as adhesion, proliferation, and differentiation of bone-forming cells, while maintaining injectability. Low aggregation and homogeneous distribution maximize particle surface area, promoting mineralization, cell-particle interactions, and homogenous tissue regeneration. Hence, determination of the size and distribution of particles/particle agglomerates in the hydrogel is desirable. Commonly used techniques have drawbacks. High-resolution techniques (e.g., SEM) require drying. Distribution in the dry state is not representative of the wet state. Techniques in the wet state (histology, µCT) are of lower resolution. Here, self-gelling, injectable composites of Gellan Gum (GG) hydrogel and two different types of sol-gel-derived bioactive glass (bioglass) particles were analyzed in the wet state using Synchrotron X-ray radiation, enabling high-resolution determination of particle size and spatial distribution. The lower detection limit volume was 9 × 10(-5) mm(3) . Bioglass particle suspensions were also studied using zeta potential measurements and Coulter analysis. Aggregation of bioglass particles in the GG hydrogels occurred and aggregate distribution was inhomogeneous. Bioglass promoted attachment of rat mesenchymal stem cells (rMSC) and mineralization.


Journal of Tissue Engineering and Regenerative Medicine | 2018

Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing

Timothy Douglas; Michal Dziadek; Svetlana Gorodzha; Jana Liskova; Gilles Brackman; Valérie Vanhoorne; Chris Vervaet; Lieve Balcaen; María del Rosario Flórez García; Aldo R. Boccaccini; Venera Weinhardt; Tilo Baumbach; Frank Vanhaecke; Tom Coenye; Lucie Bacakova; Maria A. Surmeneva; Roman A. Surmenev; Katarzyna Cholewa-Kowalska; Andre G. Skirtach

Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self‐gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X‐ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt‐derived 45S5 preparation served as a standard and was compared with a calcium‐rich, sol–gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin‐resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast‐like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium‐deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self‐gelling composites.

Collaboration


Dive into the Katarzyna Cholewa-Kowalska's collaboration.

Top Co-Authors

Avatar

Michal Dziadek

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Maria Łączka

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Barbara Zagrajczuk

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Maria Laczka

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elzbieta Pamula

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kinga Dziadek

University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge