Katarzyna Grochowska
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katarzyna Grochowska.
Beilstein Journal of Nanotechnology | 2014
Katarzyna Grochowska; Katarzyna Siuzdak; Peter A Atanasov; Carla Bittencourt; Anna. Og. Dikovska; N.N. Nedyalkov; Gerard Śliwiński
Summary A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs) which have a size distribution (80 ± 42 nm) and self-organization characterized by a short-distance order (length scale ≈140 nm). For the NP shapes produced, an observably broader tuning range (of about 150 nm) of the surface plasmon resonance (SPR) band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability.
Opto-electronics Review | 2011
Katarzyna Grochowska; N.N. Nedyalkov; P.A. Atanasov; Gerard Śliwiński
The particle size distribution, morphology and optical properties of the Au nanoparticle (NP) structures for surface enhanced Raman signal (SERS) application are investigated in dependence on their preparation conditions. The structures are produced from relatively thin Au films (10–20 nm) sputtered on fused silica glass substrate and irradiated with several pulses (6 ns) of laser radiation at 266 nm and at fluencies in the range of 160–412 mJ/cm2. The SEM inspection reveals nearly homogeneously distributed, spherical gold particles. Their initial size distribution of the range of 20–60 nm broadens towards larger particle diameters with prolonged irradiation. This is accompanied by an increase in the uncovered surface of the glass substrate and no particle removal is observed. In the absorption profiles of the nanostructures, the broad peak centred at 546 nm is ascribed to resonant absorption of surface plasmons (SPR). The peak position, halfwidth and intensity depend on the shape, size and size distribution of the nanostructured particles in agreement with literature. From peak intensities of the Raman spectra recorded for Rhodamine 6G in the range of 300–1800 cm−1, the relative signal enhancement by factor between 20 and 603 for individual peaks is estimated. The results confirm that the obtained structures can be applied for SERS measurements and sensing.
ACS Applied Materials & Interfaces | 2015
Sayani Majumdar; Katarzyna Grochowska; M. Sawczak; Gerard Śliwiński; H. Huhtinen; J. Dahl; M. Tuominen; P. Laukkanen; Himadri S. Majumdar
We report fabrication of a hybrid organic semiconductor-inorganic complex oxide interface of rubrene and La0.67Sr0.33MnO3 (LSMO) for spintronic devices using pulsed laser deposition (PLD) and investigate the interface structure and chemical bonding-dependent magnetic properties. Our results demonstrate that with proper control of growth parameters, thin films of organic semiconductor rubrene can be deposited without any damage to the molecular structure. Rubrene, a widely used organic semiconductor with high charge-carrier mobility and spin diffusion length, when grown as thin films on amorphous and crystalline substrates such as SiO2-glass, indium-tin oxide (ITO), and LSMO by PLD at room temperature and a laser fluence of 0.19 J/cm2, reveals amorphous structure. The Raman spectra verify the signatures of both Ag and Bg Raman active modes of rubrene molecules. X-ray reflectivity measurements indicate a well-defined interface formation between surface-treated LSMO and rubrene, whereas X-ray photoelectron spectra indicate the signature of hybridization of the electronic states at this interface. Magnetic measurements show that the ferromagnetic property of the rubrene-LSMO interface improves by >230% compared to the pristine LSMO surface due to this proposed hybridization. Intentional disruption of the direct contact between LSMO and rubrene by insertion of a dielectric AlOx layer results in an observably decreased ferromagnetism. These experimental results demonstrate that by controlling the interface formation between organic semiconductor and half-metallic oxide thin films, it is possible to engineer the interface spin polarization properties. Results also confirm that by using PLD for consecutive growth of different layers, contamination-free interfaces can be obtained, and this finding is significant for the well-controlled and reproducible design of spin-polarized interfaces for future hybrid spintronics devices.
Talanta | 2017
Katarzyna Grochowska; Mariusz Szkoda; Jakub Karczewski; Gerard Śliwiński; Katarzyna Siuzdak
Recently, metal nanostructures evoke much interest due to application potential in highly sensitive detectors in biochemistry and medical diagnostics. In this work we report on preparation and characteristics of thin (1-100nm) Au films deposited onto highly ordered structured titanium templates for SERS (Surface Enhanced Raman Spectroscopy) and electrochemical sensing. The Ti templates are formed by selective removal of TiO2 nanotubes out of as-anodized titanium substrate. The surface of the obtained material reproduce precisely the bottom layer of the nanotubes and consists of a uniformly distributed dimples with diameter of ~100nm. For all structures covered with Au films the measured average SERS signal is markedly higher than the one observed for bare Ti templates. This is due to strong electromagnetic field in the vicinity of the film grains. Moreover, such nanostructured gold surface exhibits also attractive electrochemical and electrocatalytic properties, which should be attributed to enhancement of the electron transfer at the Au-Ti interface formed without any linker molecules. It is shown that prepared material can be used as an enzyme-free sensor for glucose detection in air-saturated neutral media especially in case of low sugar concentrations present in human body liquids, such as saliva, sweat and interstitial fluid.
Seventeenth International School on Quantum Electronics: Laser Physics and Applications | 2013
Ru. G. Nikov; N.N. Nedyalkov; P.A. Atanasov; Katarzyna Grochowska; A. Iwulska; G. Sliwinski
In this paper results on laser nanostructuring of Au/Ag and Au/Ni thin films are presented. The nanostructuring leads to formation of arrays of bimetallic nanoparticles. The fabrication of the these structures is made using a two step procedure. Initially, thin films are deposited on quartz substrates by classical pulsed laser deposition method. In order to produce Au/Ag or Au/Ni thin films, targets with two sections consist the different metals are used. Thin films with different concentrations of the two metals are obtained by changing the area of the different sections in the target. The as prepared films are then annealed by nanosecond laser pulses delivered by Nd:YAG laser system operated at λ = 355 nm. It is found that the laser annealing may lead to nanostructuring of the deposited films as at certain conditions decomposition into monolayers of nanoparticles with narrow size distribution is obtained. The performed EDX analyses indicate that the fabricated particles are composed by a bimetallic system of the basic metals used. The transmission spectra of the obtained structures show evidences of plasmon excitations. The bimetal nanostructures are covered with Rhodamine 6G and then tested as active substrates for Surface Enhanced Raman Spectroscopy (SERS).
Talanta | 2017
Katarzyna Grochowska; Mariusz Szkoda; Jakub Karczewski; Gerard Śliwiński; Katarzyna Siuzdak
Corrigendum to “Ordered titanium templates functionalized by gold films for biosensing applications – Towards non-enzymatic glucose detection” [Talanta 166 (2017) 207–214] Katarzyna Grochowskaa,, Mariusz Szkoda, Jakub Karczewski, Gerard Śliwiński, Katarzyna Siuzdak a Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland b Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland c Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
19th International Conference and School on Quantum Electronics: Laser Physics and Applications, ICSQE 2016 | 2017
N.N. Nedyalkov; Ru. Nikov; Ro. Nikov; A. Nikolov; P.A. Atanasov; Yasutaka Nakajima; Mitsuhiro Terakawa; M. Sawczak; Katarzyna Grochowska; G. Sliwinski
In this work laser-assisted methods for metal nanostructures formation and their application as active substrates in Surface Enhanced Raman Spectroscopy are presented. The nanostructures are fabricated by laser processing of gold thin films deposited on low cost substrates as glass, ceramic, polymer and paper. The films are deposited by classical PLD technology. The produced films are then processed by nanosecond pulses delivered by nanosecond Nd:YAG laser system. At certain conditions the laser treatment leads to formation of discrete nanostructure on the substrate surface. Femtosecond Pulsed Laser Deposition in air is also applied for direct deposition of gold nanostructure. In another set of experiments gold nanoparticle colloids are fabricated by laser ablation of gold target in chloroform. The fabricated structures are then tested as active systems in SERS, as detection of pesticides (DDT), nitrates (NH4NO3), and drugs (Methylene blue) is demonstrated. The obtained results show that these nanostructures can be efficiently used in the detection and monitoring of materials with a high social impact.
Photonics Letters of Poland | 2011
Katarzyna Grochowska; Gerard Śliwiński
The paper presents the way that colour can serve solving the problem of calibration points indexing in a camera geometrical calibration process. We propose a technique in which indexes of calibration points in a black-and-white chessboard are represented as sets of colour regions in the neighbourhood of calibration points. We provide some general rules for designing a colour calibration chessboard and provide a method of calibration image analysis. We show that this approach leads to obtaining better results than in the case of widely used methods employing information about already indexed points to compute indexes. We also report constraints concerning the technique. Nowadays we are witnessing an increasing need for camera geometrical calibration systems. They are vital for such applications as 3D modelling, 3D reconstruction, assembly control systems, etc. Wherever possible, calibration objects placed in the scene are used in a camera geometrical calibration process. This approach significantly increases accuracy of calibration results and makes the calibration data extraction process easier and universal. There are many geometrical camera calibration techniques for a known calibration scene [1]. A great number of them use as an input calibration points which are localised and indexed in the scene. In this paper we propose the technique of calibration points indexing which uses a colour chessboard. The presented technique was developed by solving problems we encountered during experiments with our earlier methods of camera calibration scene analysis [2]-[3]. In particular, the proposed technique increases the number of indexed points points in case of local lack of calibration points detection. At the beginning of the paper we present a way of designing a chessboard pattern. Then we describe a calibration point indexing method, and finally we show experimental results. A black-and-white chessboard is widely used in order to obtain sub-pixel accuracy of calibration points localisation [1]. Calibration points are defined as corners of chessboard squares. Assuming the availability of rough localisation of these points, the points can be indexed. Noting that differences in distances between neighbouring points in calibration scene images differ slightly, one of the local searching methods can be employed (e.g. [2]). Methods of this type search for a calibration point to be indexed, using a window of a certain size. The position of the window is determined by a vector representing the distance between two previously indexed points in the same row or column. However, experiments show that this approach has its disadvantages, as described below. * E-mail: [email protected] Firstly, there is a danger of omitting some points during indexing in case of local lack of calibration points detection in a neighbourhood (e.g. caused by the presence of non-homogeneous light in the calibration scene). A particularly unfavourable situation is when the local lack of detection effects in the appearance of separated regions of detected calibration points. It is worth saying that such situations are likely to happen for calibration points situated near image borders. Such points are very important for the analysis of optical nonlinearities, and a lack of them can significantly influence the accuracy of distortion modelling. Secondly, such methods may give wrong results in the case of optical distortion with strong nonlinearities when getting information about the neighbouring index is not an easy task. Beside this, the methods are very sensitive to a single false localisation of a calibration point. Such a single false localisation can even result in false indexing of a big set of calibration points. To avoid the above-mentioned problems, we propose using a black-and-white chessboard which contains the coded index of a calibration point in the form of colour squares situated in the nearest neighbourhood of each point. The index of a certain calibration point is determined by colours of four nearest neighbouring squares (Fig.1). An order of squares in such foursome is important. Because the size of a colour square is determined only by the possibility of correct colour detection, the size of a colour square can be smaller than the size of a black or white square. The larger size of a black or white square is determined by the requirements of the exact localisation step which follows the indexing of calibration points [3]. In this step, edge information is extracted from a blackand-white chessboard. This edge information needs larger Artur Nowakowski, Wladyslaw Skarbek Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, [email protected] Received February 10, 2009; accepted March 27, 2009; published March 31, 2009 http://www.photonics.pl/PLP
Applied Surface Science | 2015
Katarzyna Siuzdak; Mariusz Szkoda; Anna Lisowska-Oleksiak; Katarzyna Grochowska; Jakub Karczewski; Jacek Ryl
Applied Surface Science | 2016
Ru. Nikov; N.N. Nedyalkov; P.A. Atanasov; D. Hirsch; B. Rauschenbach; Katarzyna Grochowska; G. Sliwinski