Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katarzyna Rajkowska is active.

Publication


Featured researches published by Katarzyna Rajkowska.


PLOS ONE | 2014

Abiotic Determinants of the Historical Buildings Biodeterioration in the Former Auschwitz II – Birkenau Concentration and Extermination Camp

Małgorzata Piotrowska; Anna Otlewska; Katarzyna Rajkowska; Anna Koziróg; Mariusz Hachułka; Paulina Nowicka-Krawczyk; Grzegorz J. Wolski; Beata Gutarowska; Alina Kunicka-Styczyńska; Agnieszka Żydzik-Białek

The paper presents the results of a study conducted at the Auschwitz-Birkenau State Museum in Oświęcim on the occurrence of biodeterioration. Visual assessment of the buildings revealed signs of deterioration of the buildings in the form of dampness, bulging and crumbling plaster, and wood fiber splitting. The external surfaces, and especially the concrete strips and ground immediately adjoining the buildings, were colonized by bryophytes, lichens, and algae. These organisms developed most intensively close to the ground on the northern sides of the buildings. Inside the buildings, molds and bacteria were not found to develop actively, while algae and wood-decaying fungi occurred locally. The factors conducive to biological corrosion in the studied buildings were excessive dampness of structural partitions close to the ground and a relative air humidity of above 70%, which was connected to ineffective moisture insulation. The influence of temperature was smaller, as it mostly affected the quantitative composition of the microorganisms and the qualitative composition of the algae. Also the impact of light was not very strong, but it was conducive to algae growth.


Science of The Total Environment | 2014

Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp.

Paulina Nowicka-Krawczyk; Joanna Żelazna-Wieczorek; Anna Otlewska; Anna Koziróg; Katarzyna Rajkowska; Małgorzata Piotrowska; Beata Gutarowska; Agnieszka Żydzik-Białek

Aerial phototrophs colonize materials of anthropogenic origin, thus contributing to their biodeterioration. Structures preserved at the former Auschwitz II-Birkenau concentration and extermination camp show signs of degradation by cyanobacteria and algae. In order to protect the Auschwitz-Birkenau Memorial Site, diversity of aerial phototrophs growing on the historic buildings has been studied. Analyses of cyanobacterial and algal biofilms growing on various construction substrates were carried out in summer and winter. Multivariate data analyses were used to: characterize the diversity of cyanobacteria and algae growing in brick and wooden camp buildings depending on the research season, indicate preferences of cyanobacteria and algae in colonizing substrates, and to predict the environmental factor that most determines the growth of phototrophs. The biofilms were formed mainly by cyanobacteria, green algae and diatoms. The amount of cyanobacteria and algae in the biofilms was varied, which resulted from changes in climatic conditions, the type of substrate and the height at which the biofilms developed. In the summer, the ratio of cyanobacteria and algae groups was balanced, while in the winter, green algae and diatoms were dominant. Green algae showed a preference for colonizing plaster, wood and concrete, of which the walls and doors of the buildings were made. Their participation was correlated with a height gradient. Cyanobacteria and diatoms grew on bricks and soil on the floor of the buildings and temperature and relative humidity were the factors that modified their amount. Green algae were more cosmopolitan-occurred in dry places, potentially inaccessible to other organisms; therefore, they have been identified as the pioneer group in the prevailing climatic conditions.


Acta Biochimica Polonica | 2016

Quaternary ammonium biocides as antimicrobial agents protecting historical wood and brick

Katarzyna Rajkowska; Anna Koziróg; Anna Otlewska; Małgorzata Piotrowska; Paulina Nowicka-Krawczyk; Bogumił Brycki; Alina Kunicka-Styczyńska; Beata Gutarowska

Quaternary ammonium compounds (QACs) are widely used in disinfection of water, surfaces and instruments as well as in textile, leather and food industries because of their relatively low toxicity, broad antimicrobial spectrum, non-volatility and chemical stability. Due to these advantages, QACs are also used in restoration and can be applied on historical material. The aim of this study was to determine the usefulness of biocides based on quaternary ammonium salts and containing various excipients in the protection of historical materials against microbial growth. The study determined the antimicrobial activity of three biocides against bacteria: Pseudomonas fluorescens, Staphylococcus equorum, Bacillus cereus, Bacillus muralis, Sporosarcina aquimarina and Rhodococcus fascians, and moulds: Chaetomium globosum, Penicillium citreonigrum, Cladosporium cladosporioides I, Acremonium strictum, Aspergillus fumigatus and Cladosporium cladosporioides II, all isolated from historical wood and brick. Staphylococcus equorum, Bacillus cereus, Sporosarcina aquimarina and Rhodococcus fascians bacteria, and Cladosporium cladosporioides I and Acremonium strictum moulds showed high sensitivity to quaternary ammonium biocides. Historical wood can be effectively disinfected by three applications of biocide A (30% v/v) containing dodecyl dimethyl ammonium chloride (DDAC), citric acid, propiconazole and propanol. Disinfection of historical brick can be carried out by three applications of 6% v/v solutions of biocide B (based on DDAC and ethylenediaminetetraacetic acid - EDTA) or biocide C (containing a non-ionic surfactant, DDAC and EDTA). Effective protection of historical building materials against microbial growth for a period of seven days can be achieved by the application of biocide A (30% v/v) on the wood surface and biocide B (6% v/v) on the brick surface.


Letters in Applied Microbiology | 2015

Preservative activity of lavender hydrosols in moisturizing body gels

Alina Kunicka-Styczyńska; Krzysztof Śmigielski; Renata Prusinowska; Katarzyna Rajkowska; Beata Kuśmider; Magdalena Sikora

The study was undertaken to verify the antimicrobial activity of Lavandula angustifolia hydrosols in moisturizing body gels. The inhibition efficacy of four lavender hydrosols (obtained from fresh or dry herbs or flowers) was tested against Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 1627, Candida sp. ŁOCK 0008 and Aspergillus niger ATCC 16404 in compliance with the standards of the European Pharmacopoeia Commission. Although the tested hydrosols did not express any remarkable antimicrobial action when tested via the macrodilution method, they show preservative activity in cosmetic preparations. Criterion A for fungi was fulfilled for the cosmetic formulation containing dried flower hydrosol (reduction of the inoculum by two logarithmic units within 14 days with no increase up to the 28th day) and Criterion B for bacteria E. coli and Staph. aureus (reduction of the inoculum by three logarithmic units within 14 days with no increase up to the 28th day). The fresh herb lavender hydrosol in the cosmetic formulation was regarded as the second one effectively satisfying Criterion B for bacteria, but its activity against fungi was below the acceptance value set out in the official regulations. Lavender hydrosols used as a replacement for water phase in cosmetics may contribute to maintaining microbiological stability of cosmetic formulations.


Microbial Drug Resistance | 2017

Selected Essential Oils as Antifungal Agents Against Antibiotic-Resistant Candida spp.: In Vitro Study on Clinical and Food-Borne Isolates.

Katarzyna Rajkowska; Alina Kunicka-Styczyńska; Marta Maroszyńska

Candida spp. cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. As a result of the increasing antibiotic resistance among pathogenic yeasts, the interest in alternative agents of antifungal activity is growing. This study evaluated the antimicrobial activity of selected essential oils (EOs) against Candida clinical and food-borne strains, including antibiotic-resistant isolates, in relation to yeast cell surface hydrophobicity (CSH). Candida strains showed different range of susceptibility to tea tree, thyme, peppermint, and clove oils, and peppermint oil demonstrated the lowest anticandidal activity with minimal inhibitory concentrations (MICs) of 0.03-8.0% v/v. MIC values for thyme and clove oils ranged from 0.03% to 0.25% v/v, and for tea tree oil-from 0.12% to 2.0% v/v. The exception was Candida tropicalis food-borne strain, the growth of which was inhibited after application of EOs at concentration of 8% v/v. Due to diverse yeast susceptibility to EOs, isolates were divided into five clusters in a principal component analysis model, each containing both clinical and food-borne strains. Hydrophobic properties of yeast were also diversified, and 37% of clinical and 50% of food-borne strains exhibited high hydrophobicity. The study indicates high homology of clinical and food-borne Candida isolates in relation to their susceptibility to anticandidal agents and hydrophobic properties. The susceptibility of yeasts to EOs could be partially related to their CSH. High antifungal activity of examined EOs, also against antibiotic-resistant isolates, indicates their usefulness as agents preventing the development of Candida strains of different origin.


International Journal of Molecular Sciences | 2017

Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations

Katarzyna Rajkowska; Anna Otlewska; Alina Kunicka-Styczyńska; Agnieszka Krajewska

Members of Candida species cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. In order to prevent from Candida sp. development, essential oils are more and more frequently applied, due to their antifungal activity, low toxicity if used appropriately, and biodegrability. The aim of the study was to characterize the early alterations in Candida albicans metabolic properties in relation to proteins and chromosomal DNA profiles, after treatment with peppermint and clove oils at sub-inhibitory concentrations. The yeasts were affected by the oils even at a concentration of 0.0075% v/v, which resulted in changes in colony morphotypes and metabolic activities. Peppermint and clove oils at concentrations ranging from 0.015× MIC (minimal inhibitory concentration) to 0.5× MIC values substantially affected the enzymatic abilities of C. albicans, and these changes were primarily associated with the loss or decrease of activity of all 9 enzymes detected in the untreated yeast. Moreover, 29% isolates showed additional activity of N-acetyl-β-glucosaminidase and 14% isolates—α-fucosidase in comparison to the yeast grown without essential oils addition. In response to essential oils at 0.25–0.5× MIC, extensive changes in C. albicans whole-cell protein profiles were noted. However, the yeast biochemical profiles were intact with the sole exception of the isolate treated with clove oil at 0.5× MIC. The alterations were not attributed to gross chromosomal rearrangements in C. albicans karyotype. The predominantly observed decrease in protein fractions and the yeast enzymatic activity after treatment with the oils should be considered as a phenotypic response of C. albicans to the essential oils at their sub-inhibitory concentrations and may lead to the reduction of this yeast pathogenicity.


RSC Advances | 2016

Biological effects of various chemically characterized essential oils: investigation of the mode of action against Candida albicans and HeLa cells

Katarzyna Rajkowska; Adriana Nowak; Alina Kunicka-Styczyńska; Anna Siadura

Natural products derived from medicinal plants play increasingly important roles as alternative antifungal and anticancer agents. The aim of this study was to assess the cytotoxic and genotoxic effects of tea tree, thyme, peppermint and clove essential oils against two model organisms, namely, the fungal pathogen Candida albicans and cancer HeLa cells. The chemical compositions of the tea tree and peppermint oils predominantly comprised terpene alcohols, and the major constituents of the thyme and clove oils were phenolic compounds. Our results indicated the ability of all tested essential oils to disrupt the permeability barrier of cell membrane structures, which was the most likely the cause of their lethal action against Candida albicans, as well as damage of mitochondria and DNA in the HeLa cells. None of the evaluated essential oils inhibited the synthesis of fungal cell wall. Although the essential oils were characterized by different chemical compositions, they affected the same cellular targets, indicating that these cytotoxic and genotoxic effects can be considered to occur by the same universal mechanism. We assumed that this multidirectional activity of the various essential oils was due to their complex nature rather than the presence of any one particular compound.


International Journal of Molecular Sciences | 2016

Protection of Historical Wood against Microbial Degradation—Selection and Application of Microbiocides

Anna Koziróg; Katarzyna Rajkowska; Anna Otlewska; Małgorzata Piotrowska; Alina Kunicka-Styczyńska; Bogumił Brycki; Paulina Nowicka-Krawczyk; Marta Kościelniak; Beata Gutarowska

The aim of this study was to select effective and safe microbiocides for the disinfection and protection of historical wooden surfaces at the former Auschwitz II-Birkenau concentration and extermination camp. We tested seven active compounds against bacteria and moulds, of which didecyldimethylammonium chloride and N-(3-aminopropyl)-N-dodecylpropane-1,3-diamine were effective even at 0.02%–2%. Subsequently, eight microbiocides containing the selected active ingredients were chosen and applied three times on the surface of wood samples colonized by bacteria and moulds. ABM-1 and ABM-2—6% solution; Rocima 101—8%; Preventol R 80—12%; Acticide 706 LV—15% and Boramon—30% were the most effective disinfectants. Under laboratory conditions, ABM-1, Boramon and Rocima 101 ensured antimicrobial protection of new wood samples for six months. In situ, 30% Boramon and 8% Rocima 101 applied by spraying effectively protected the historical wood from bacterial and mould growth for 12 and 3 months, respectively. Colour and luminance of the new wood were not altered after exposure to the biocides. Boramon and Rocima 101, applied by the spraying method, caused no significant change in the colour of the historical wood. Results from this study were used to develop a procedure for the protection of wood in historical buildings against biodeterioration.


Yeast | 2014

Biodiversity of brewery yeast strains and their fermentative activities

Joanna Berlowska; Dorota Kręgiel; Katarzyna Rajkowska

We investigated the genetic, biochemical, fermentative and physiological characteristics of brewery yeast strains and performed a hierarchical cluster analysis to evaluate their similarity. We used five different ale and lager yeast strains, originating from different European breweries and deposited at the National Collection of Yeast Cultures (UK). Ale and lager strains exhibited different genomic properties, but their assimilation profiles and pyruvate decarboxylase activities corresponded to their species classifications. The activity of another enzyme, succinate dehydrogenase, varied between different brewing strains. Our results confirmed that ATP and glycogen content, and the activity of the key metabolic enzymes succinate dehydrogenase and pyruvate decarboxylase, may be good general indicators of cell viability. However, the genetic properties, physiology and fermentation capacity of different brewery yeasts are unique to individual strains. Copyright


International Journal of Food Microbiology | 2018

Typing and virulence factors of food-borne Candida spp. isolates

Katarzyna Rajkowska; Alina Kunicka-Styczyńska

Food-borne yeasts, excluding yeasts used as starter cultures, are commonly considered as food spoilage microorganisms. However, the incidence of non-C. albicans Candida (NCAC) infections has increased considerably over the past two decades. Although 15 Candida species are frequently identified as pathogens, a threat to human from food-borne Candida is poorly recognized. In the present study food-borne NCAC were characterized for the virulence factors, known to be associated with yeast pathogenicity. All food-borne strains in planktonic forms and 89% in biofilm structures represented biotypes established for C. albicans, and 61% demonstrated hemolytic activity. 56-94% of food-borne isolates formed biofilms on glass and biomaterials at a level comparable to clinical C. albicans. Nine out of eighteen tested food-borne NCAC strains (C. krusei, C. lusitaniae, C. famata, C. colliculosa, C. parapsilosis, C. tropicalis) showed similarity to clinical C. albicans in terms of their biotypes and the tested virulence factors, allocating them in a group of risk of potential pathogens. However, their capacity to grow at 37 °C seems to be the preliminary criterion in the study of potential virulence of food-borne yeasts.

Collaboration


Dive into the Katarzyna Rajkowska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Otlewska

Lodz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Beata Gutarowska

Lodz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Maroszyńska

Lodz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bogumił Brycki

Adam Mickiewicz University in Poznań

View shared research outputs
Researchain Logo
Decentralizing Knowledge