Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kate Gavaghan is active.

Publication


Featured researches published by Kate Gavaghan.


IEEE Transactions on Biomedical Engineering | 2011

A Portable Image Overlay Projection Device for Computer-Aided Open Liver Surgery

Kate Gavaghan; Matthias Peterhans; Thiago Oliveira-Santos; Stefan Weber

Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation systems position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the devices projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.


Otology & Neurotology | 2013

In vitro accuracy evaluation of image-guided robot system for direct cochlear access

Brett Bell; Nicolas Gerber; Tom Williamson; Kate Gavaghan; Wilhelm Wimmer; Marco Caversaccio; Stefan Weber

Hypothesis A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. Background Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. Materials and Methods The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. Results Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. Conclusion The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.


Journal of Surgical Research | 2013

Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery

Nicolas Buchs; Francesco Giorgio Domenic Volonte; François Louis Pugin; Christian Toso; Matteo Fusaglia; Kate Gavaghan; Pietro Majno; Matthias Peterhans; Stefan Weber; Philippe Morel

BACKGROUND Stereotactic navigation technology can enhance guidance during surgery and enable the precise reproduction of planned surgical strategies. Currently, specific systems (such as the CAS-One system) are available for instrument guidance in open liver surgery. This study aims to evaluate the implementation of such a system for the targeting of hepatic tumors during robotic liver surgery. MATERIAL AND METHODS Optical tracking references were attached to one of the robotic instruments and to the robotic endoscopic camera. After instrument and video calibration and patient-to-image registration, a virtual model of the tracked instrument and the available three-dimensional images of the liver were displayed directly within the robotic console, superimposed onto the endoscopic video image. An additional superimposed targeting viewer allowed for the visualization of the target tumor, relative to the tip of the instrument, for an assessment of the distance between the tumor and the tool for the realization of safe resection margins. RESULTS Two cirrhotic patients underwent robotic navigated atypical hepatic resections for hepatocellular carcinoma. The augmented endoscopic view allowed for the definition of an accurate resection margin around the tumor. The overlay of reconstructed three-dimensional models was also used during parenchymal transection for the identification of vascular and biliary structures. Operative times were 240 min in the first case and 300 min in the second. There were no intraoperative complications. CONCLUSIONS The da Vinci Surgical System provided an excellent platform for image-guided liver surgery with a stable optic and instrumentation. Robotic image guidance might improve the surgeons orientation during the operation and increase accuracy in tumor resection. Further developments of this technological combination are needed to deal with organ deformation during surgery.


IEEE Transactions on Biomedical Engineering | 2013

High-Accuracy Patient-to-Image Registration for the Facilitation of Image-Guided Robotic Microsurgery on the Head

Nicolas Gerber; Kate Gavaghan; Brett Bell; Tom Williamson; Christian Weisstanner; Marco-Domenico Caversaccio; Stefan Weber

Image-guided microsurgery requires accuracies an order of magnitude higher than todays navigation systems provide. A critical step toward the achievement of such low-error requirements is a highly accurate and verified patient-to-image registration. With the aim of reducing target registration error to a level that would facilitate the use of image-guided robotic microsurgery on the rigid anatomy of the head, we have developed a semiautomatic fiducial detection technique. Automatic force-controlled localization of fiducials on the patient is achieved through the implementation of a robotic-controlled tactile search within the head of a standard surgical screw. Precise detection of the corresponding fiducials in the image data is realized using an automated model-based matching algorithm on high-resolution, isometric cone beam CT images. Verification of the registration technique on phantoms demonstrated that through the elimination of user variability, clinically relevant target registration errors of approximately 0.1 mm could be achieved.


computer assisted radiology and surgery | 2012

Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies

Kate Gavaghan; Thiago Oliveira-Santos; Matthias Peterhans; Mauricio Reyes; Hyung Min Kim; Sylvain Anderegg; Stefan Weber

IntroductionPresenting visual feedback for image-guided surgery on a monitor requires the surgeon to perform time-consuming comparisons and diversion of sight and attention away from the patient. Deficiencies in previously developed augmented reality systems for image-guided surgery have, however, prevented the general acceptance of any one technique as a viable alternative to monitor displays. This work presents an evaluation of the feasibility and versatility of a novel augmented reality approach for the visualisation of surgical planning and navigation data. The approach, which utilises a portable image overlay device, was evaluated during integration into existing surgical navigation systems and during application within simulated navigated surgery scenarios.MethodsA range of anatomical models, surgical planning data and guidance information taken from liver surgery, cranio-maxillofacial surgery, orthopaedic surgery and biopsy were displayed on patient-specific phantoms, directly on to the patient’s skin and on to cadaver tissue. The feasibility of employing the proposed augmented reality visualisation approach in each of the four tested clinical applications was qualitatively assessed for usability, visibility, workspace, line of sight and obtrusiveness.ResultsThe visualisation approach was found to assist in spatial understanding and reduced the need for sight diversion throughout the simulated surgical procedures. The approach enabled structures to be identified and targeted quickly and intuitively. All validated augmented reality scenes were easily visible and were implemented with minimal overhead. The device showed sufficient workspace for each of the presented applications, and the approach was minimally intrusiveness to the surgical scene.ConclusionThe presented visualisation approach proved to be versatile and applicable to a range of image-guided surgery applications, overcoming many of the deficiencies of previously described AR approaches. The approach presents an initial step towards a widely accepted alternative to monitor displays for the visualisation of surgical navigation data.


AE-CAI'11 Proceedings of the 6th international conference on Augmented Environments for Computer-Assisted Interventions | 2011

Augmented reality image overlay projection for image guided open liver ablation of metastatic liver cancer

Kate Gavaghan; Sylvain Anderegg; Matthias Peterhans; Thiago Oliveira-Santos; Stefan Weber

This work presents an evaluation of a novel augmented reality approach for the visualisation of real time guidance of an ablation tool to a tumor in open liver surgery. The approach uses a portable image overlay device, directly integrated into a liver surgical navigation system, to display guidance graphics along with underlying anatomical structures directly on the liver surface. The guidance application generates trajectories from the current ablation needle tip to the centre of the tumor. Needle alignment guidance and depth information are displayed directly on the liver surface, providing intuitive real-time feedback for guiding the ablation tool tip to the targeted tumor. Validation of the guidance visual feedback on porcine liver tissue showed that the system was useful in trajectory planning and tumor targeting. The augmented reality guidance was easily visible, removed the need for sight diversion and was implemented without imposing any timely or procedural overhead when compared to a navigated procedure itself.


Otology & Neurotology | 2016

A Neuromonitoring Approach to Facial Nerve Preservation During Image-guided Robotic Cochlear Implantation.

Juan Anso; Cilgia Dür; Kate Gavaghan; Helene Rohrbach; Nicolas Gerber; Tom Williamson; Calvo Em; Thomas Wyss Balmer; Precht C; Damien Ferrario; Matthias Dettmer; Kai M. Rösler; Caversaccio; Brett Bell; Stefan Weber

Hypothesis: A multielectrode probe in combination with an optimized stimulation protocol could provide sufficient sensitivity and specificity to act as an effective safety mechanism for preservation of the facial nerve in case of an unsafe drill distance during image-guided cochlear implantation. Background: A minimally invasive cochlear implantation is enabled by image-guided and robotic-assisted drilling of an access tunnel to the middle ear cavity. The approach requires the drill to pass at distances below 1 mm from the facial nerve and thus safety mechanisms for protecting this critical structure are required. Neuromonitoring is currently used to determine facial nerve proximity in mastoidectomy but lacks sensitivity and specificity necessaries to effectively distinguish the close distance ranges experienced in the minimally invasive approach, possibly because of current shunting of uninsulated stimulating drilling tools in the drill tunnel and because of nonoptimized stimulation parameters. To this end, we propose an advanced neuromonitoring approach using varying levels of stimulation parameters together with an integrated bipolar and monopolar stimulating probe. Materials and Methods: An in vivo study (sheep model) was conducted in which measurements at specifically planned and navigated lateral distances from the facial nerve were performed to determine if specific sets of stimulation parameters in combination with the proposed neuromonitoring system could reliably detect an imminent collision with the facial nerve. For the accurate positioning of the neuromonitoring probe, a dedicated robotic system for image-guided cochlear implantation was used and drilling accuracy was corrected on postoperative microcomputed tomographic images. Results: From 29 trajectories analyzed in five different subjects, a correlation between stimulus threshold and drill-to-facial nerve distance was found in trajectories colliding with the facial nerve (distance <0.1 mm). The shortest pulse duration that provided the highest linear correlation between stimulation intensity and drill-to-facial nerve distance was 250 &mgr;s. Only at low stimulus intensity values (⩽0.3 mA) and with the bipolar configurations of the probe did the neuromonitoring system enable sufficient lateral specificity (>95%) at distances to the facial nerve below 0.5 mm. However, reduction in stimulus threshold to 0.3 mA or lower resulted in a decrease of facial nerve distance detection range below 0.1 mm (>95% sensitivity). Subsequent histopathology follow-up of three representative cases where the neuromonitoring system could reliably detect a collision with the facial nerve (distance <0.1 mm) revealed either mild or inexistent damage to the nerve fascicles. Conclusion: Our findings suggest that although no general correlation between facial nerve distance and stimulation threshold existed, possibly because of variances in patient-specific anatomy, correlations at very close distances to the facial nerve and high levels of specificity would enable a binary response warning system to be developed using the proposed probe at low stimulation currents.


Otology & Neurotology | 2014

Feasibility of Using EMG for Early Detection of the Facial Nerve During Robotic Direct Cochlear Access

Juan Anso; Christina Stahl; Nicolas Gerber; Tom Williamson; Kate Gavaghan; Kai M. Rösler; Marco-Domenico Caversaccio; Stefan Weber; Brett Bell

Hypothesis Facial nerve monitoring can be used synchronous with a high-precision robotic tool as a functional warning to prevent of a collision of the drill bit with the facial nerve during direct cochlear access (DCA). Background Minimally invasive direct cochlear access (DCA) aims to eliminate the need for a mastoidectomy by drilling a small tunnel through the facial recess to the cochlea with the aid of stereotactic tool guidance. Because the procedure is performed in a blind manner, structures such as the facial nerve are at risk. Neuromonitoring is a commonly used tool to help surgeons identify the facial nerve (FN) during routine surgical procedures in the mastoid. Recently, neuromonitoring technology was integrated into a commercially available drill system enabling real-time monitoring of the FN. The objective of this study was to determine if this drilling system could be used to warn of an impending collision with the FN during robot-assisted DCA. Materials and Methods The sheep was chosen as a suitable model for this study because of its similarity to the human ear anatomy. The same surgical workflow applicable to human patients was performed in the animal model. Bone screws, serving as reference fiducials, were placed in the skull near the ear canal. The sheep head was imaged using a computed tomographic scanner and segmentation of FN, mastoid, and other relevant structures as well as planning of drilling trajectories was carried out using a dedicated software tool. During the actual procedure, a surgical drill system was connected to a nerve monitor and guided by a custom built robot system. As the planned trajectories were drilled, stimulation and EMG response signals were recorded. A postoperative analysis was achieved after each surgery to determine the actual drilled positions. Results Using the calibrated pose synchronized with the EMG signals, the precise relationship between distance to FN and EMG with 3 different stimulation intensities could be determined for 11 different tunnels drilled in 3 different subjects. Conclusion From the results, it was determined that the current implementation of the neuromonitoring system lacks sensitivity and repeatability necessary to be used as a warning device in robotic DCA. We hypothesize that this is primarily because of the stimulation pattern achieved using a noninsulated drill as a stimulating probe. Further work is necessary to determine whether specific changes to the design can improve the sensitivity and specificity.


Cochlear Implants International | 2014

An image-guided robot system for direct cochlear access

Brett Bell; Tom Williamson; Nicolas Gerber; Kate Gavaghan; Wilhelm Wimmer; Martin Kompis; Stefan Weber; Marco Caversaccio

Abstract The aim of direct cochlear access (DCA) is to replace the standard mastoidectomy with a small diameter tunnel from the lateral bone surface to the cochlea for electrode array insertion. In contrast to previous attempts, the approach described in this work not only achieves an unprecedented high accuracy, but also contains several safety sub-systems. This paper provides a brief description of the system components, and summarizes accuracy results using the system in a cadaver model over the past two years.


Acta Oto-laryngologica | 2017

Robotic cochlear implantation: surgical procedure and first clinical experience

Marco Caversaccio; Kate Gavaghan; Wilhelm Wimmer; Tom Williamson; Juan Anso; Georgios Mantokoudis; Nicolas Gerber; Christoph Rathgeb; Arne Niklas Feldmann; Franca Wagner; Olivier Scheidegger; Martin Kompis; Christian Weisstanner; Masoud Zoka-Assadi; Kai Roesler; Lukas Anschuetz; Markus E. Huth; Stefan Weber

Abstract Conclusion: A system for robotic cochlear implantation (rCI) has been developed and a corresponding surgical workflow has been described. The clinical feasibility was demonstrated through the conduction of a safe and effective rCI procedure. Objectives: To define a clinical workflow for rCI and demonstrate its feasibility, safety, and effectiveness within a clinical setting. Method: A clinical workflow for use of a previously described image guided surgical robot system for rCI was developed. Based on pre-operative images, a safe drilling tunnel targeting the round window was planned and drilled by the robotic system. Intra-operatively the drill path was assessed using imaging and sensor-based data to confirm the proximity of the facial nerve. Electrode array insertion was manually achieved under microscope visualization. Electrode array placement, structure preservation, and the accuracy of the drilling and of the safety mechanisms were assessed on post-operative CT images. Results: Robotic drilling was conducted with an accuracy of 0.2 mm and safety mechanisms predicted proximity of the nerves to within 0.1 mm. The approach resulted in a minimal mastoidectomy and minimal incisions. Manual electrode array insertion was successfully performed through the robotically drilled tunnel. The procedure was performed without complications, and all surrounding structures were preserved.

Collaboration


Dive into the Kate Gavaghan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge