Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katendi Changula is active.

Publication


Featured researches published by Katendi Changula.


The Journal of Infectious Diseases | 2015

Seroepidemiological Prevalence of Multiple Species of Filoviruses in Fruit Bats (Eidolon helvum) Migrating in Africa

Hirohito Ogawa; Hiroko Miyamoto; Eri Nakayama; Reiko Yoshida; Ichiro Nakamura; Hirofumi Sawa; Akihiro Ishii; Yuka Thomas; Emiko Nakagawa; Keita Matsuno; Masahiro Kajihara; Junki Maruyama; Naganori Nao; Mieko Muramatsu; Makoto Kuroda; Edgar Simulundu; Katendi Changula; Bernard M. Hang'ombe; Boniface Namangala; Andrew Nambota; Jackson Katampi; Manabu Igarashi; Kimihito Ito; Heinz Feldmann; Chihiro Sugimoto; Ladslav Moonga; Aaron S. Mweene; Ayato Takada

Fruit bats are suspected to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Using an enzyme-linked immunosorbent assay based on the viral glycoprotein antigens, we detected filovirus-specific immunoglobulin G antibodies in 71 of 748 serum samples collected from migratory fruit bats (Eidolon helvum) in Zambia during 2006-2013. Although antibodies to African filoviruses (eg, Zaire ebolavirus) were most prevalent, some serum samples showed distinct specificity for Reston ebolavirus, which that has thus far been found only in Asia. Interestingly, the transition of filovirus species causing outbreaks in Central and West Africa during 2005-2014 seemed to be synchronized with the change of the serologically dominant virus species in these bats. These data suggest the introduction of multiple species of filoviruses in the migratory bat population and point to the need for continued surveillance of filovirus infection of wild animals in sub-Saharan Africa, including hitherto nonendemic countries.


Microbiology and Immunology | 2014

Ebola and Marburg virus diseases in Africa: Increased risk of outbreaks in previously unaffected areas?

Katendi Changula; Masahiro Kajihara; Aaron S. Mweene; Ayato Takada

Filoviral hemorrhagic fever (FHF) is caused by ebolaviruses and marburgviruses, which both belong to the family Filoviridae. Egyptian fruit bats (Rousettus aegyptiacus) are the most likely natural reservoir for marburgviruses and entry into caves and mines that they stay in has often been associated with outbreaks of MVD. On the other hand, the natural reservoir for ebola viruses remains elusive; however, handling of wild animal carcasses has been associated with some outbreaks of EVD. In the last two decades, there has been an increase in the incidence of FHF outbreaks in Africa, some being caused by a newly found virus and some occurring in previously unaffected areas such as Guinea, Liberia and Sierra Leone, in which the most recent EVD outbreak occurred in 2014. Indeed, the predicted geographic distribution of filoviruses and their potential reservoirs in Africa includes many countries in which FHF has not been reported. To minimize the risk of virus dissemination in previously unaffected areas, there is a need for increased investment in health infrastructure in African countries, policies to facilitate collaboration between health authorities from different countries, implementation of outbreak control measures by relevant multi‐disciplinary teams and education of the populations at risk.


Virus Research | 2013

Mapping of conserved and species-specific antibody epitopes on the Ebola virus nucleoprotein

Katendi Changula; Reiko Yoshida; Osamu Noyori; Andrea Marzi; Hiroko Miyamoto; Mari Ishijima; Ayaka Yokoyama; Masahiro Kajihara; Heinz Feldmann; Aaron S. Mweene; Ayato Takada

Filoviruses (viruses in the genus Ebolavirus and Marburgvirus in the family Filoviridae) cause severe haemorrhagic fever in humans and nonhuman primates. Rapid, highly sensitive, and reliable filovirus-specific assays are required for diagnostics and outbreak control. Characterisation of antigenic sites in viral proteins can aid in the development of viral antigen detection assays such immunochromatography-based rapid diagnosis. We generated a panel of mouse monoclonal antibodies (mAbs) to the nucleoprotein (NP) of Ebola virus belonging to the species Zaire ebolavirus. The mAbs were divided into seven groups based on the profiles of their specificity and cross-reactivity to other species in the Ebolavirus genus. Using synthetic peptides corresponding to the Ebola virus NP sequence, the mAb binding sites were mapped to seven antigenic regions in the C-terminal half of the NP, including two highly conserved regions among all five Ebolavirus species currently known. Furthermore, we successfully produced species-specific rabbit antisera to synthetic peptides predicted to represent unique filovirus B-cell epitopes. Our data provide useful information for the development of Ebola virus antigen detection assays.


Ticks and Tick-borne Diseases | 2018

Molecular detection and characterization of zoonotic Anaplasma species in domestic dogs in Lusaka, Zambia

Pipina A. Vlahakis; Simbarashe Chitanga; Martin Simuunza; Edgar Simulundu; Yongjin Qiu; Katendi Changula; Herman M. Chambaro; Masahiro Kajihara; Ryo Nakao; Ayato Takada; Aaron S. Mweene

Although tick-borne pathogens, Anaplasma platys and Anaplasma phagocytophilum are recognized as zoonotic agents associated with appreciable morbidity and mortality in dogs and humans worldwide, there is limited information on these infections in many African countries, including Zambia. The purpose of this study was to detect, identify and phylogenetically characterize Anaplasma species from dogs in Chilanga District in Lusaka Province, Zambia. A total of 301 blood samples were collected from apparently healthy and semi-confined dogs. Initial screening by polymerase chain reaction with specific primers targeting the 16S rRNA gene of Anaplasma species revealed that 9% (27/301) of our samples were positive. Subsequent sequence and phylogenetic analysis of a longer fragment of the 16S rRNA and citrate synthase (gltA) genes of four positive samples showed the presence of A. platys and an Anaplasma species, which was closely related to those detected in dogs in South Africa. This is the first report on molecular identification and characterization of canine-associated zoonotic Anaplasma species in Zambia.


Avian Pathology | 2018

Characterization of field infectious bursal disease viruses in Zambia: evidence of co-circulation of multiple genotypes with predominance of very virulent strains

Racheal Mwenda; Katendi Changula; Bernard M. Hang’ombe; Nozyechi N. Chidumayo; Alfred S. Mangani; Titus Kaira; Ayato Takada; Aaron S. Mweene; Edgar Simulundu

ABSTRACT Infectious bursal disease (IBD) is a highly contagious, immunosuppressive disease of chickens and causes substantial economic losses to the poultry industry globally. This study investigated the genetic characteristics and pathological lesions induced by IBD viruses (IBDVs) that were associated with 60 suspected outbreaks in chickens during 2015–2016 in Lusaka Province, Zambia. Nucleotide sequences of VP2 hypervariable region (VP2-HVR) (n = 38) and part of VP1 (n = 37) of Zambian IBDVs were phylogenetically analysed. Phylogenetic analysis of the VP2-HVR and VP1 revealed that most viruses (n = 31 of each genome segment) clustered with the very virulent (vv) strains. The rest of the viruses clustered with the classical strains, with two of the viruses being closely related to attenuated vaccine isolates. Two of the viruses that belonged to the vv genotype had a unique amino acid (aa) substitution Q324L whereas one virus had two unique changes, N280S and E300A in the VP2-HVR aa sequence. Although Zambian strains with a vv genotype possessed virulence marker aa within VP1 at 145T, 146D and 147N, two viruses showed unique substitutions, with one virus having 147T while the other had 147H. Pathologically, it was noted that only viruses with a vv genotype appeared to be associated with inducing pathological lesions in non-lymphoid organs (proventriculus and gizzard). Whilst documenting for the first time the presence of classical virulent IBDVs, this study demonstrates the involvement of multiple genotypes, with predominance of vvIBDVs in the epidemiology of IBD in Zambia.


Reviews in Medical Virology | 2016

Lujo viral hemorrhagic fever: considering diagnostic capacity and preparedness in the wake of recent Ebola and Zika virus outbreaks

Edgar Simulundu; Aaron S. Mweene; Katendi Changula; Mwaka Monze; Elizabeth Chizema; Peter Mwaba; Ayato Takada; Guiseppe Ippolito; Francis Kasolo; Alimuddin Zumla; Matthew Bates

Lujo virus is a novel Old World arenavirus identified in Southern Africa in 2008 as the cause of a viral hemorrhagic fever (VHF) characterized by nosocomial transmission with a high case fatality rate of 80% (4/5 cases). Whereas this outbreak was limited, the unprecedented Ebola virus disease outbreak in West Africa, and recent Zika virus disease epidemic in the Americas, has brought into acute focus the need for preparedness to respond to rare but potentially highly pathogenic outbreaks of zoonotic or arthropod‐borne viral infections. A key determinant for effective control of a VHF outbreak is the time between primary infection and diagnosis of the index case. Here, we review the Lujo VHF outbreak of 2008 and discuss how preparatory measures with respect to developing diagnostic capacity might be effectively embedded into existing national disease control networks, such as those for human immunodeficiency virus, tuberculosis, and malaria.


The Journal of Infectious Diseases | 2018

Seroprevalence of Filovirus Infection of Rousettus aegyptiacus Bats in Zambia

Katendi Changula; Masahiro Kajihara; Akina Mori-Kajihara; Yoshiki Eto; Hiroko Miyamoto; Reiko Yoshida; Asako Shigeno; Bernard M. Hang’ombe; Yongjin Qiu; Daniel Mwizabi; David Squarre; Joseph Ndebe; Hirohito Ogawa; Hayato Harima; Edgar Simulundu; Ladslav Moonga; Penjaninge Kapila; Wakako Furuyama; Tatsunari Kondoh; Masahiro Sato; Yoshihiro Takadate; Chiho Kaneko; Ryo Nakao; Victor Mukonka; Aaron S. Mweene; Ayato Takada

Bats are suspected to play important roles in the ecology of filoviruses, including ebolaviruses and marburgviruses. A cave-dwelling fruit bat, Rousettus aegyptiacus, has been shown to be a reservoir of marburgviruses. Using an enzyme-linked immunosorbent assay with the viral glycoprotein antigen, we detected immunoglobulin G antibodies specific to multiple filoviruses in 158 of 290 serum samples of R aegyptiacus bats captured in Zambia during the years 2014-2017. In particular, 43.8% of the bats were seropositive to marburgvirus, supporting the notion that this bat species continuously maintains marburgviruses as a reservoir. Of note, distinct peaks of seropositive rates were repeatedly observed at the beginning of rainy seasons, suggesting seasonality of the presence of newly infected individuals in this bat population. These data highlight the need for continued monitoring of filovirus infection in this bat species even in countries where filovirus diseases have not been reported.


Parasites & Vectors | 2018

First molecular detection and genetic characterization of Coxiella burnetii in Zambian dogs and rodents

Simbarashe Chitanga; Edgar Simulundu; Martin Simuunza; Katendi Changula; Yongjin Qiu; Masahiro Kajihara; Ryo Nakao; Michelo Syakalima; Ayato Takada; Aaron S. Mweene; Samson Mukaratirwa; Bernard M. Hang’ombe

Coxiella burnetii, the causative agent of Q fever, is a zoonotic pathogen associated with sylvatic or domestic transmission cycles, with rodents being suspected to link the two transmission cycles. Infection and subsequent disease in humans has historically been associated with contact with infected livestock, especially sheep. However, recently there have been reports of Q fever outbreaks associated with contact with infected rodents and dogs. Studies exploring the potential role of these animal hosts in the epidemiology of Q fever in many developing countries in Africa are very limited. This study aimed to determine the potential role of rodents and dogs in the epidemiological cycle of C. burnetti in Zambia. Using pathogen-specific polymerase chain reaction assays targeting the 16S rRNA gene, C. burnetii was detected for the first time in 45% of rodents (9/20), in one shrew and in 10% of domestic dogs (15/150) screened in Zambia. Phylogenetic characterization of six samples based on the isocitrate synthase gene revealed that the strains were similar to a group of isolates from chronic human Q fever patients, goats and rodents reported in multiple continents. Considering the close proximity of domestic dogs and rodents to humans, especially in resource-limited communities, the presence of C. burnetii in these animals could be of significant public health importance. It is thus important to determine the burden of Q fever in humans in such resource-limited communities where there is close contact between humans, rodents and dogs.


Infection, Genetics and Evolution | 2018

Identification of group A rotaviruses from Zambian fruit bats provides evidence for long-distance dispersal events in Africa

Michihito Sasaki; Masahiro Kajihara; Katendi Changula; Akina Mori-Kajihara; Hirohito Ogawa; Bernard M. Hang'ombe; Aaron S. Mweene; Martin Simuunza; Reiko Yoshida; Michael J. Carr; Yasuko Orba; Ayato Takada; Hirofumi Sawa

Abstract Group A rotavirus (RVA) is a major cause of diarrhea in children worldwide. Although RVA infects many animals, little is known about RVA in bats. The present study investigated the genetic diversity of RVA in Zambian bats. We identified RVA from two straw-colored fruit bats (Eidolon helvum) and an Egyptian fruit bat (Rousettus aegyptiacus), and analyzed the genome sequences of these strains. Genome segments of the RVA strains from Zambian E. helvum showed 97%–99% nucleotide sequence identity with those of other RVA strains from E. helvum in Cameroon, which is 2800 km from the sampling locations. These findings suggest that migratory straw-colored fruit bat species, distributed across sub-Saharan Africa, have the potential to disseminate RVA across long distances. By contrast, the RVA strain from Zambian R. aegyptiacus carried highly divergent NSP2 and NSP4 genes, leading us to propose novel genotypes N21 and E27, respectively. Notably, this RVA strain also shared the same genotype for VP6 and NSP3 with the RVA strains from Zambian E. helvum, suggesting interspecies transmission and genetic reassortment may have occurred between these two bat species in the past. Our study has important implications for RVA dispersal in bat populations, and expands our knowledge of the ecology, diversity and evolutionary relationships of RVA.


Archives of Virology | 2018

First genetic detection and characterization of canine parvovirus from diarrheic dogs in Zambia

James Kapiya; King Shimumbo Nalubamba; Evans Kaimoyo; Katendi Changula; Nozyechi N. Chidumayo; Ngonda Saasa; Martin Simuunza; Ayato Takada; Aaron S. Mweene; Simbarashe Chitanga; Edgar Simulundu

Although canine parvovirus (CPV) causes severe gastroenteritis in dogs globally, information on the molecular epidemiology of the virus is lacking in many African countries. Here, 32 fecal samples collected from diarrheic dogs in Zambia were tested for CPV infection using molecular assays. CPV was detected in 23 samples (71.9%). Genetic characterization revealed the predominance of CPV-2c (91.3%). This finding differs from previous reports in Africa, which indicated that CPV-2a and CPV-2b were most prevalent. Phylogenetically, most Zambian CPVs formed a distinct cluster. This is the first report on the molecular characterization of CPV in Zambia.

Collaboration


Dive into the Katendi Changula's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge