Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katharina Jandl is active.

Publication


Featured researches published by Katharina Jandl.


Neurogastroenterology and Motility | 2015

The GPR55 antagonist CID16020046 protects against intestinal inflammation.

Angela Stančić; Katharina Jandl; Carina Hasenöhrl; Florian Reichmann; Gunther Marsche; Rufina Schuligoi; Akos Heinemann; Martin Storr; Rudolf Schicho

G protein‐coupled receptor 55 (GPR55) is a lysophospholipid receptor responsive to certain cannabinoids. The role of GPR55 in inflammatory processes of the gut is largely unknown. Using the recently characterized GPR55 inhibitor CID16020046, we determined the role of GPR55 in experimental intestinal inflammation and explored possible mechanisms of action.


Molecular Nutrition & Food Research | 2013

Xanthohumol ameliorates atherosclerotic plaque formation, hypercholesterolemia, and hepatic steatosis in ApoE‐deficient mice

Prakash Doddapattar; Branislav Radovic; Jay V. Patankar; Sascha Obrowsky; Katharina Jandl; Christoph Nusshold; Dagmar Kolb; Nemanja Vujic; Lalit S. Doshi; Prakash G. Chandak; Madeleine Goeritzer; Helmut Ahammer; Gerald Hoefler; Wolfgang Sattler; Dagmar Kratky

SCOPE Xanthohumol (XN), a prenylated antioxidative and anti-inflammatory chalcone from hops, exhibits positive effects on lipid and glucose metabolism. Based on its favorable biological properties, we investigated whether XN attenuates atherosclerosis in western-type diet-fed apolipoprotein-E-deficient (ApoE⁻/⁻) mice. METHODS AND RESULTS XN supplementation markedly reduced plasma cholesterol concentrations, decreased atherosclerotic lesion area, and attenuated plasma concentrations of the proinflammatory cytokine monocyte chemoattractant protein 1. Decreased hepatic triglyceride and cholesterol content, activation of AMP-activated protein kinase, phosphorylation and inactivation of acetyl-CoA carboxylase, and reduced expression levels of mature sterol regulatory element-binding protein (SREBP)-2 and SREBP-1c mRNA indicate reduced lipogenesis in the liver of XN-fed ApoE⁻/⁻ mice. Concomitant induction of hepatic mRNA expression of carnitine palmitoyltransferase-1a in ApoE⁻/⁻ mice-administered XN suggests increased fatty acid beta-oxidation. Fecal cholesterol concentrations were also markedly increased in XN-fed ApoE⁻/⁻ mice compared with mice fed western-type diet alone. CONCLUSION The atheroprotective effects of XN might be attributed to combined beneficial effects on plasma cholesterol and monocyte chemoattractant protein 1 concentrations and hepatic lipid metabolism via activation of AMP-activated protein kinase.


Journal of Immunology | 2014

Opposing Roles of Prostaglandin D2 Receptors in Ulcerative Colitis

Eva M. Sturm; Balázs Radnai; Katharina Jandl; Angela Stančić; Gerald P. Parzmair; Christoph Högenauer; Patrizia Kump; H Wenzl; Wolfgang Petritsch; Thomas R. Pieber; Rufina Schuligoi; Gunther Marsche; Nerea Ferreirós; Akos Heinemann; Rudolf Schicho

Proresolution functions were reported for PGD2 in colitis, but the role of its two receptors, D-type prostanoid (DP) and, in particular, chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2), is less well defined. We investigated DP and CRTH2 expression and function during human and murine ulcerative colitis (UC). Expression of receptors was measured by flow cytometry on peripheral blood leukocytes and by immunohistochemistry and immunoblotting in colon biopsies of patients with active UC and healthy individuals. Receptor involvement in UC was evaluated in a mouse model of dextran sulfate sodium colitis. DP and CRTH2 expression changed in leukocytes of patients with active UC in a differential manner. In UC patients, DP showed higher expression in neutrophils but lower in monocytes as compared with control subjects. In contrast, CRTH2 was decreased in eosinophils, NK, and CD3+ T cells but not in monocytes and CD3+/CD4+ T cells. The decrease of CRTH2 on blood eosinophils clearly correlated with disease activity. DP correlated positively with disease activity in eosinophils but inversely in neutrophils. CRTH2 internalized upon treatment with PGD2 and 11-dehydro TXB2 in eosinophils of controls. Biopsies of UC patients revealed an increase of CRTH2-positive cells in the colonic mucosa and high CRTH2 protein content. The CRTH2 antagonist CAY10595 improved, whereas the DP antagonist MK0524 worsened inflammation in murine colitis. DP and CRTH2 play differential roles in UC. Although expression of CRTH2 on blood leukocytes is downregulated in UC, CRTH2 is present in colon tissue, where it may contribute to inflammation, whereas DP most likely promotes anti-inflammatory actions.


The Journal of Allergy and Clinical Immunology | 2016

Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

Katharina Jandl; Elvira Stacher; Zoltán Bálint; Eva M. Sturm; Jovana Maric; Miriam Peinhaupt; Petra Luschnig; Ida Aringer; Alexander Fauland; Viktoria Konya; Sven-Erik Dahlén; Craig E. Wheelock; Dagmar Kratky; Andrea Olschewski; Gunther Marsche; Rufina Schuligoi; Akos Heinemann

Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation.


Journal of Leukocyte Biology | 2015

Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis

Stefanie Schlager; Madeleine Goeritzer; Katharina Jandl; Robert Frei; Nemanja Vujic; Dagmar Kolb; Heimo Strohmaier; Juliane Dorow; Thomas O. Eichmann; Angelika Rosenberger; Albert Wölfler; Achim Lass; Erin E. Kershaw; Uta Ceglarek; Andrea Dichlberger; Akos Heinemann; Dagmar Kratky

In humans, mutations in ATGL lead to TG accumulation in LDs of most tissues and cells, including peripheral blood leukocytes. This pathologic condition is called Jordans’ anomaly, in which functional consequences have not been investigated. In the present study, we tested the hypothesis that ATGL plays a role in leukocyte LD metabolism and immune cell function. Similar to humans with loss‐of‐function mutations in ATGL, we found that global and myeloid‐specific Atgl−/− mice exhibit Jordans’ anomaly with increased abundance of intracellular TG‐rich LDs in neutrophil granulocytes. In a model of inflammatory peritonitis, lipid accumulation was also observed in monocytes and macrophages but not in eosinophils or lymphocytes. Neutrophils from Atgl−/− mice showed enhanced immune responses in vitro, which were more prominent in cells from global compared with myeloid‐specific Atgl−/− mice. Mechanistically, ATGL−/− as well as pharmacological inhibition of ATGL led to an impaired release of lipid mediators from neutrophils. These findings demonstrate that the release of lipid mediators is dependent on the liberation of precursor molecules from the TG‐rich pool of LDs by ATGL. Our data provide mechanistic insights into Jordans’ anomaly in neutrophils and suggest that ATGL is a potent regulator of immune cell function and inflammatory diseases.


British Journal of Pharmacology | 2015

Activation of EP4 receptors prevents endotoxin‐induced neutrophil infiltration into the airways and enhances microvascular barrier function

Viktoria Konya; Jovana Maric; Katharina Jandl; Petra Luschnig; Ida Aringer; I Lanz; Wolfgang Platzer; Anna Theiler; Thomas Bärnthaler; Robert Frei; Gunther Marsche; L M Marsh; Andrea Olschewski; Irmgard Th. Lippe; Akos Heinemann; Rufina Schuligoi

Pulmonary vascular dysfunction is a key event in acute lung injury. We recently demonstrated that PGE2, via activation of E‐prostanoid (EP)4 receptors, strongly enhances microvascular barrier function in vitro. The aim of this study was to investigate the beneficial effects of concomitant EP4 receptor activation in murine models of acute pulmonary inflammation.


Journal of Neuroinflammation | 2016

1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype

Ioanna Plastira; Eva Bernhart; Madeleine Goeritzer; Helga Reicher; Vishwanath Bhat Kumble; Nora Kogelnik; Andrea Wintersperger; Astrid Hammer; Stefanie Schlager; Katharina Jandl; Akos Heinemann; Dagmar Kratky; Ernst Malle; Wolfgang Sattler

BackgroundMicroglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization.MethodsLPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA.ResultsBV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses.ConclusionsLPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.


British Journal of Pharmacology | 2015

EP4 receptor prevents endotoxin‐induced neutrophil infiltration into the airways and enhances microvascular barrier function

Konya; Jovana Maric; Katharina Jandl; Petra Luschnig; Ida Aringer; I Lanz; Wolfgang Platzer; Anna Theiler; Thomas Bärnthaler; Robert Frei; Gunther Marsche; L M Marsh; A Olschewski; I.Th. Lippe; Akos Heinemann; Rufina Schuligoi

Pulmonary vascular dysfunction is a key event in acute lung injury. We recently demonstrated that PGE2, via activation of E‐prostanoid (EP)4 receptors, strongly enhances microvascular barrier function in vitro. The aim of this study was to investigate the beneficial effects of concomitant EP4 receptor activation in murine models of acute pulmonary inflammation.


Journal of Immunology | 2014

A Biased Non-Gαi OXE-R Antagonist Demonstrates That Gαi Protein Subunit Is Not Directly Involved in Neutrophil, Eosinophil, and Monocyte Activation by 5-Oxo-ETE

Viktoria Konya; Stefanie Blättermann; Katharina Jandl; Wolfgang Platzer; Philipp A. Ottersbach; Gunther Marsche; Michael Gütschow; Evi Kostenis; Akos Heinemann

Gαi-coupled chemoattractant receptors, such as the 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) receptor (OXE-R), are able to switch on Gαiβγ protein-dependent and β-arrestin–related signaling traits. However, which of these signaling pathways are truly important for the chemoattractant functions in leukocytes is not clarified yet. As we recently reported, Gue1654 is a unique Gβγ-biased OXE-R antagonist having no inhibitory activity on Gαi-related signaling, which makes Gue1654 an unprecedented tool for assessing the involvement of G protein subunits in chemoattractant receptor function. β-arrestin2 recruitment was studied in OXE-R–overexpressing HEK293 cells using bioluminescence resonance energy transfer assays. Activation of leukocytes was assessed by flow cytometric assays and by immunofluorescence microscopy. Leukocyte capture to endothelial cells was addressed under physiological flow conditions. We found that Gue1654 blocks β-arrestin2 recruitment in HEK293 cells overexpressing OXE-R and ERK1/2 phosphorylation in human eosinophils and neutrophils. Furthermore, Gue1654 was able to prevent several 5-oxo-ETE–triggered functional events in eosinophils and neutrophils, such as activation of CD11b/CD18 integrins, oxidative burst, actin polymerization, and interaction with endothelial cells. In addition, Gue1654 completely prevented 5-oxo-ETE–induced Ca2+ flux and chemotaxis of human primary monocytes. All of these leukocyte responses to 5-oxo-ETE, except ERK1/2 phosphorylation and oxidative burst, were likewise prevented by pertussis toxin. Therefore, we conclude that chemoattractant receptors require Gαi subunits only as adaptors to transactivate the Gβγ heteromers, which then act responsible for cell activation. Finally, our data characterize Gue1654 as a non-Gαi–biased antagonist of OXE-R that provides a new basis for therapeutic intervention in inflammatory diseases that involve activation of eosinophils, neutrophils, and monocytes.


Journal of Crohns & Colitis | 2016

Eosinophils Contribute to Intestinal Inflammation via Chemoattractant Receptor-homologous Molecule Expressed on Th2 Cells, CRTH2, in Experimental Crohn’s Disease

Balázs Radnai; Eva M. Sturm; Angela Stančić; Katharina Jandl; Sandra Labocha; Nerea Ferreirós; Magdalena Grill; Carina Hasenoehrl; Gregor Gorkiewicz; Gunther Marsche; Akos Heinemann; Christoph Högenauer; Rudolf Schicho

BACKGROUND AND AIMS Prostaglandin [PG] D2 activates two receptors, DP and CRTH2. Antagonism of CRTH2 has been shown to promote anti-allergic and anti-inflammatory effects. We investigated whether CRTH2 may play a role in Crohns disease [CD], focusing on eosinophils which are widely present in the inflamed mucosa of CD patients and express both receptors. METHODS Using the 2,4,6-trinitrobenzenesulfonic acid [TNBS]-induced colitis model, involvement of CRTH2 in colitis was investigated by pharmacological antagonism, immunohistochemistry, Western blotting, immunoassay, and leukocyte recruitment. Chemotactic assays were performed with isolated human eosinophils. Biopsies and serum samples of CD patients were examined for presence of CRTH2 and ligands, respectively. RESULTS High amounts of CRTH2-positive cells, including eosinophils, are present in the colonic mucosa of mice with TNBS colitis and in human CD. The CRTH2 antagonist OC-459, but not the DP antagonist MK0524, reduced inflammation scores and decreased TNF-α, IL-1β, and IL-6 as compared with control mice. OC-459 inhibited recruitment of eosinophils into the colon and also inhibited CRTH2-induced chemotaxis of human eosinophils in vitro. Eosinophil-depleted ΔdblGATA knockout mice were less sensitive to TNBS-induced colitis, whereas IL-5 transgenic mice with lifelong eosinophilia were more severely affected than wild types. In addition, we show that serum levels of PGD2 and Δ(12)-PGJ2 were increased in CD patients as compared with control individuals. CONCLUSIONS CRTH2 plays a pro-inflammatory role in TNBS-induced colitis. Eosinophils contribute to the severity of the inflammation, which is improved by a selective CRTH2 antagonist. CRTH2 may, therefore, represent an important target in the pharmacotherapy of CD.

Collaboration


Dive into the Katharina Jandl's collaboration.

Top Co-Authors

Avatar

Akos Heinemann

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Gunther Marsche

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Ida Aringer

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Rufina Schuligoi

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Olschewski

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Dagmar Kratky

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Rudolf Schicho

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge