Katharine J. Schlesinger
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katharine J. Schlesinger.
The Astrophysical Journal | 2010
K. D. Denney; Bradley M. Peterson; Richard W. Pogge; A. Adair; David W. Atlee; K. Au-Yong; Misty C. Bentz; Jonathan C. Bird; D. J. Brokofsky; E. Chisholm; M. L. Comins; Matthias Dietrich; V. T. Doroshenko; Jason D. Eastman; Yu. S. Efimov; S. Ewald; S. Ferbey; C. M. Gaskell; C. H. Hedrick; K. Jackson; S.A. Klimanov; Elizabeth S. Klimek; A. K. Kruse; A. Ladéroute; J. B. Lamb; Karen M. Leighly; Takeo Minezaki; S. V. Nazarov; Christopher A. Onken; Eric A. Petersen
We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hβ reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hβ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR–L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hβ time-delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.
Monthly Notices of the Royal Astronomical Society | 2015
G. M. De Silva; Kenneth C. Freeman; Joss Bland-Hawthorn; Sarah L. Martell; E. Wylie De Boer; Martin Asplund; Stefan C. Keller; Sanjib Sharma; Daniel B. Zucker; Tomaž Zwitter; Borja Anguiano; Carlos Bacigalupo; D. Bayliss; M.A. Beavis; Maria Bergemann; Simon Campbell; R. Cannon; Daniela Carollo; Luca Casagrande; Andrew R. Casey; G. S. Da Costa; Valentina D'Orazi; Aaron Dotter; Ly Duong; Alexander Heger; Michael J. Ireland; Prajwal R. Kafle; Janez Kos; John C. Lattanzio; Geraint F. Lewis
The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ~ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ~ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
Monthly Notices of the Royal Astronomical Society | 2014
A. F. Marino; A. P. Milone; Norbert Przybilla; Maria Bergemann; Karin Lind; Martin Asplund; S. Cassisi; Marcio Catelan; Luca Casagrande; A.A.R Valcarce; L. R. Bedin; Cristián Cortés; F. D'Antona; Helmut Jerjen; Giampaolo Piotto; Katharine J. Schlesinger; M. Zoccali; R. Angeloni
We present an abundance analysis of 96 horizontal branch (HB) stars in NGC 2808, a globular cluster exhibiting a complex multiple stellar population p attern. These stars are distributed in different portions of the HB and cover a wide range of temperature. By studying the chemical abundances of this sample, we explore the connection between HB morphology and the chemical enrichment history of multiple stellar populatio ns. For stars lying on the red HB, we use GIRAFFE and UVES spectra to determine Na, Mg, Si, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Y, Ba, and Nd abundances. For colder, blue HB stars, we derive abundances for Na, primarily from GIRAFFE spectra. We were also able to measure direct NLTE He abundances for a subset of these blue HB stars with temperature higher than∼9000 K. Our results show that: (i) HB stars in NGC 2808 show different content in Na depending on their position in the color-magnitude diagram, with blue HB stars having higher Na than red HB stars; (ii) the red HB is not consistent with an uniform chemical abundance, with slightly warmer stars exhibiting a statistically significant higher Na content; and (iii) our subsample of blue HB stars with He abundances shows evidence of enhancement with respect to the predicted primordial He ‐ ‐ ‐ ‐
The Astrophysical Journal | 2009
K. D. Denney; Bradley M. Peterson; Richard W. Pogge; A. Adair; David W. Atlee; K. Au-Yong; Misty C. Bentz; Jonathan C. Bird; D. J. Brokofsky; E. Chisholm; M. L. Comins; Matthias Dietrich; V. T. Doroshenko; Jason D. Eastman; Yu. S. Efimov; S. Ewald; S. Ferbey; C. M. Gaskell; C. H. Hedrick; K. Jackson; S. A. Klimanov; Elizabeth S. Klimek; A. K. Kruse; A. Ladéroute; J. B. Lamb; Karen M. Leighly; Takeo Minezaki; S. V. Nazarov; Christopher A. Onken; Eric A. Petersen
A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hbeta emission region within the broad line regions (BLRs) of several nearby AGNs exhibit a variety of kinematic behaviors. While the primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs (presented in a separate work), we were also able to unambiguously reconstruct velocity-resolved reverberation signals from a subset of our targets. Through high cadence spectroscopic monitoring of the optical continuum and broad Hbeta emission line variations observed in the nuclear regions of NGC 3227, NGC 3516, and NGC 5548, we clearly see evidence for outflowing, infalling, and virialized BLR gas motions, respectively.
The Astrophysical Journal | 2014
Luca Casagrande; V. Silva Aguirre; D. Stello; Daniel Huber; Aldo M. Serenelli; S. Cassisi; Aaron Dotter; A. P. Milone; Simon T. Hodgkin; A. F. Marino; Mikkel N. Lund; A. Pietrinferni; Martin Asplund; Sofia Feltzing; Chris Flynn; F. Grundahl; Poul Nissen; Ralph Schoenrich; Katharine J. Schlesinger; Wei Wang
Asteroseismology has the capability of precisely determining stellar properties that would otherwise be inaccessible, such as radii, masses, and thus ages of stars. When coupling this information with classical determinations of stellar parameters, such as metallicities, effective temperatures, and angular diameters, powerful new diagnostics for Galactic studies can be obtained. The ongoing Stromgren survey for Asteroseismology and Galactic Archaeology has the goal of transforming the Kepler field into a new benchmark for Galactic studies, similar to the solar neighborhood. Here we present the first results from a stripe centered at a Galactic longitude of 74 degrees and covering latitude from about 8 degrees to 20 degrees, which includes almost 1000 K giants with seismic information and the benchmark open cluster NGC 6819. We describe the coupling of classical and seismic parameters, the accuracy as well as the caveats of the derived effective temperatures, metallicities, distances, surface gravities, masses, and radii. Confidence in the achieved precision is corroborated by the detection of the first and secondary clumps in a population of field stars with a ratio of 2 to 1 and by the negligible scatter in the seismic distances among NGC 6819 member stars. An assessment of the reliability of stellar parameters in the Kepler Input Catalog is also performed, and the impact of our results for population studies in the Milky Way is discussed, along with the importance of an all-sky Stromgren survey. (Less)
Monthly Notices of the Royal Astronomical Society | 2017
Sarah L. Martell; Sanjib Sharma; Sven Buder; Ly Duong; Katharine J. Schlesinger; Jeffrey D. Simpson; Karin Lind; Melissa Ness; Martin Asplund; Joss Bland-Hawthorn; Andrew R. Casey; G. M. De Silva; Kenneth C. Freeman; Janez Kos; Jane Lin; Daniel B. Zucker; Tomaž Zwitter; Borja Anguiano; Carlos Bacigalupo; Daniela Carollo; Luca Casagrande; G. S. Da Costa; Jonathan Horner; D. Huber; E. A. Hyde; Prajwal R. Kafle; Geraint F. Lewis; David M. Nataf; Colin A. Navin; D. Stello
The Galactic Archaeology with HERMES (GALAH) Survey is a massive observational project to trace the Milky Ways history of star formation, chemical enrichment, stellar migration and minor mergers. Using high-resolution (R
The Astronomical Journal | 2008
C. Zheng; Roger W. Romani; Masao Sako; John P. Marriner; Bruce A. Bassett; Andrew Cameron Becker; Changsu Choi; D. Cinabro; F. DeJongh; D. L. DePoy; Benjamin E. P. Dilday; Mamoru Doi; Joshua A. Frieman; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Myungshin Im; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Donald P. Schneider; Mathew Smith
\simeq
Monthly Notices of the Royal Astronomical Society | 2016
Luca Casagrande; V. Silva Aguirre; Katharine J. Schlesinger; D. Stello; D. Huber; Aldo M. Serenelli; Ralph Schönrich; S. Cassisi; A. Pietrinferni; Simon T. Hodgkin; A. P. Milone; Sofia Feltzing; Martin Asplund
28,000) spectra taken with the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) instrument at the Anglo-Australian Telescope (AAT), GALAH will determine stellar parameters and abundances of up to 29 elements for up to one million stars. Selecting targets from a colour-unbiased catalogue built from 2MASS, APASS and UCAC4 data, we expect to observe dwarfs at 0.3 to 3 kpc and giants at 1 to 10 kpc. This enables a thorough local chemical inventory of the Galactic thin and thick disks, and also captures smaller samples of the bulge and halo. In this paper we present the plan, process and progress as of early 2016 for GALAH survey observations. In our first two years of survey observing we have accumulated the largest high-quality spectroscopic data set at this resolution, over 200,000 stars. We also present the first public GALAH data catalogue: stellar parameters (Teff, log(g), [Fe/H], [alpha/Fe]), radial velocity, distance modulus and reddening for 10680 observations of 9860 Tycho-2 stars that may be included in the first Gaia data release.
The Astrophysical Journal | 2013
Lauren E. Palladino; Katharine J. Schlesinger; Kelly Holley-Bockelmann; Carlos Allende Prieto; Timothy C. Beers; Young Sun Lee; Donald P. Schneider
This paper presents spectroscopy of supernovae (SNe) discovered in the first season of the Sloan Digital Sky Survey-II SN Survey. This program searches for and measures multi-band light curves of SNe in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the SN population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our SN spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the SN and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host-galaxy contamination existing in the majority of our SN spectra.
Astronomy and Astrophysics | 2015
E. Fernandez-Alvar; C. Allende Prieto; Katharine J. Schlesinger; Timothy C. Beers; A. C. Robin; Donald P. Schneider; Young Sun Lee; Dmitry Bizyaev; Elena Malanushenko; Viktor Malanushenko; Daniel Oravetz; Kaike Pan; Audrey Simmons
The existence of a vertical age gradient in the Milky Way disc has been indirectly known for long. Here, we measure it directly for the first time with seismic ages, using red giants observed by Kepler. We use Stromgren photometry to gauge the selection function of asteroseismic targets, and derive colour and magnitude limits where giants with measured oscillations are representative of the underlying population in the field. Limits in the 2MASS system are also derived. We lay out a method to assess and correct for target selection effects independent of Galaxy models. We find that low-mass, i. e. old red giants dominate at increasing Galactic heights, whereas closer to the Galactic plane they exhibit a wide range of ages and metallicities. Parametrizing this as a vertical gradient returns approximately 4 Gyr kpc(-1) for the disc we probe, although with a large dispersion of ages at all heights. The ages of stars show a smooth distribution over the last similar or equal to 10 Gyr, consistent with a mostly quiescent evolution for the Milky Way disc since a redshift of about 2. We also find a flat age-metallicity relation for disc stars. Finally, we show how to use secondary clump stars to estimate the present-day intrinsic metallicity spread, and suggest using their number count as a new proxy for tracing the ageing of the disc. This work highlights the power of asteroseismology for Galactic studies; however, we also emphasize the need for better constraints on stellar mass-loss, which is a major source of systematic age uncertainties in red giant stars. (Less)