Katharine Y. Zhang
Macquarie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katharine Y. Zhang.
Nature Communications | 2016
Kelly L. Williams; Simon Topp; Shu Yang; Bradley Smith; Jennifer A. Fifita; Sadaf T. Warraich; Katharine Y. Zhang; Natalie E. Farrawell; Caroline Vance; Xun Hu; Alessandra Chesi; Claire S. Leblond; Albert Lee; Stephanie L. Rayner; Vinod Sundaramoorthy; Carol Dobson-Stone; Mark P. Molloy; Marka van Blitterswijk; Dennis W. Dickson; Ronald C. Petersen; Neill R. Graff-Radford; Bradley F. Boeve; Melissa E. Murray; Cyril Pottier; Emily K. Don; Claire Winnick; Emily P. McCann; Alison L. Hogan; Hussein Daoud; Annie Levert
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin–protein ligase complex (SCFCyclin F). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCFCyclin F substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration.
Neurobiology of Aging | 2015
Kelly L. Williams; Emily P. McCann; Jennifer A. Fifita; Katharine Y. Zhang; Emma L. Duncan; Paul Leo; Mhairi Marshall; Dominic B. Rowe; Garth A. Nicholson; Ian P. Blair
Missense and frameshift mutations in TRAF family member-associated NF-kappa-B activator (TANK)-binding kinase 1 (TBK1) have been reported in European sporadic and familial amyotrophic lateral sclerosis (ALS) cohorts. To assess the role of TBK1 in ALS patient cohorts of wider ancestry, we have analyzed whole-exome sequence data from an Australian cohort of familial ALS (FALS) patients and controls. We identified a novel TBK1 deletion (c.1197delC) in a FALS patient of Chinese origin. This frameshift mutation (p.L399fs) likely results in a truncated protein that lacks functional domains required for adapter protein binding, as well as protein activation and structural integrity. No novel or reported TBK1 mutations were identified in FALS patients of European ancestry. This is the first report of a TBK1 mutation in an ALS patient of Asian origin and indicates that sequence variations in TBK1 are a rare cause of FALS in Australia.
The International Journal of Biochemistry & Cell Biology | 2014
Katharine Y. Zhang; Shu Yang; Sadaf T. Warraich; Ian P. Blair
Ubiquilin 2, which is encoded by the UBQLN2 gene, plays a critical role in protein clearance pathways including the ubiquitin-proteasome system and autophagy. Ubiquilin 2 physically associates with ubiquitin ligases and proteasomes to mediate protein degradation. It also plays a role in the regulation of cell signalling and cell cycle progression, and association with cytoskeletal elements. Recent studies have revealed that ubiquilin 2 also plays a pathogenic role in neurodegenerative disease, including amyotrophic lateral sclerosis (ALS), and ALS-frontotemporal dementia (ALS-FTD). Rare UBQLN2 mutations cause a small subset of ALS and ALS-FTD cases. More widespread is the presence of ubiquilin 2 positive inclusions in the affected neurons of some familial and sporadic ALS and ALS-FTD patients. These discoveries have led to the hypothesis that perturbation in protein clearance, mediated by ubiquilin 2, is an important pathogenic mechanism in neurodegeneration.
Human Molecular Genetics | 2015
Diane Moujalled; Janine L. James; Shu Yang; Katharine Y. Zhang; Clare Duncan; D M Moujalled; Sarah J. Parker; Aphrodite Caragounis; Grace E. Lidgerwood; Bradley J. Turner; Julie D. Atkin; Alexandra Grubman; Jeffrey R. Liddell; Christian Proepper; Tobias M. Boeckers; Katja M. Kanninen; Ian P. Blair; Peter J. Crouch; Anthony R. White
Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K- and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.
Neurotoxicity Research | 2015
Shu Yang; Katharine Y. Zhang; Ruvini Kariawasam; Monique Bax; Jennifer A. Fifita; Lezanne Ooi; Justin J. Yerbury; Garth A. Nicholson; Ian P. Blair
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterised by the progressive degeneration of brain and spinal cord motor neurons. Ubiquitin–proteasome system (UPS) dysfunction and oxidative stress have been implicated in ALS pathogenesis. However, it is unknown whether the defects in these pathways extend to non-neuronal tissues such as fibroblasts. Fibroblasts, unlike neuronal tissue, are readily available and may hold potential for short-term, rapid diagnostic and prognostic purposes. We investigated whether primary skin fibroblasts from ALS patients share, or can be manipulated to develop, functional and pathological abnormalities seen in affected neuronal cells. We inhibited UPS function and induced oxidative stress in the fibroblasts and found that ALS-related cellular changes, such as aggregate formation and ubiquitination of ALS-associated proteins (TDP-43 and ubiquilin 2), can be reproduced in these cells. Higher levels of TDP-43 ubiquitination, as evident by colocalization between TDP-43 and ubiquitin, were found in all six ALS cases compared to controls following extracellular insults. In contrast, colocalization between ubiquilin 2 and ubiquitin was not markedly different between ALS cases and control. A UPS reporter assay revealed UPS abnormalities in patient fibroblasts. Despite the presence of ALS-related cellular changes in the patient fibroblasts, no elevated toxicity was observed. This suggests that aggregate formation and colocalization of ALS-associated proteins may be insufficient alone to confer toxicity in fibroblasts used in the present study. Chronic exposure to ALS-linked stresses and the ALS-linked cellular pathologies may be necessary to breach an unknown threshold that triggers cell death.
Open Biology | 2017
Albert Lee; Stephanie L. Rayner; Alana De Luca; Serene S. L. Gwee; Marco Morsch; Vinod Sundaramoorthy; Hamideh Shahheydari; Audrey Ragagnin; Bingyang Shi; Shu Yang; Kelly L. Williams; Emily K. Don; Adam K. Walker; Katharine Y. Zhang; Justin J. Yerbury; Nicholas J. Cole; Julie D. Atkin; Ian P. Blair; Mark P. Molloy; Roger S. Chung
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that is characterized by progressive weakness, paralysis and muscle loss often resulting in patient death within 3–5 years of diagnosis. Recently, we identified disease-linked mutations in the CCNF gene, which encodes the cyclin F protein, in cohorts of patients with familial and sporadic ALS and frontotemporal dementia (FTD) (Williams KL et al. 2016 Nat. Commun. 7, 11253. (doi:10.1038/ncomms11253)). Cyclin F is a part of a Skp1-Cul-F-box (SCF) E3 ubiquitin-protein ligase complex and is responsible for ubiquitylating proteins for degradation by the proteasome. In this study, we investigated the phosphorylation status of cyclin F and the effect of the serine to glycine substitution at site 621 (S621G) on E3 ligase activity. This specific mutation (S621G) was found in a multi-generational Australian family with ALS/FTD. We identified seven phosphorylation sites on cyclin F, of which five are newly reported including Ser621. These phosphorylation sites were mostly identified within the PEST (proline, glutamic acid, serine and threonine) sequence located at the C-terminus of cyclin F. Additionally, we determined that casein kinase II (CK2) can phosphorylate Ser621 and thereby regulate the E3 ligase activity of the SCF(cyclin F) complex. Furthermore, the S621G mutation in cyclin F prevents phosphorylation by CK2 and confers elevated Lys48-ubiquitylation activity, a hallmark of ALS/FTD pathology. These findings highlight the importance of phosphorylation in regulating the activity of the SCF(cyclin F) E3 ligase complex that can affect downstream processes and may lead to defective motor neuron development, neuron degeneration and ultimately ALS and FTD.
Neurodegenerative Diseases | 2017
Jennifer A. Fifita; Katharine Y. Zhang; Jasmin Galper; Kelly L. Williams; Emily P. McCann; Alison L. Hogan; Neil F. W. Saunders; Denis C. Bauer; Ingrid S. Tarr; Roger Pamphlett; Garth A. Nicholson; Dominic B. Rowe; Shu Yang; Ian P. Blair
Background: Mutations in the genes encoding the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1 have been reported in a multisystem proteinopathy that includes amyotrophic lateral sclerosis (ALS) and inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia. Mutations were also described in the prion-like domain of hnRNPA1 in patients with classic ALS. Another hnRNP protein, hnRNPA3, has been found to be associated with the ALS/frontotemporal dementia protein C9orf72. Objective: To further assess their role in ALS, we examined these hnRNPs in spinal cord tissue from sporadic (SALS) and familial ALS (FALS) patients, including C9orf72 repeat expansion-positive patients, and controls. We also sought to determine the prevalence of HNRNPA1, HNRNPA2B1, and HNRNPA3 mutations in Australian ALS patients. Methods: Immunostaining was used to assess hnRNPs in ALS patient spinal cords. Mutation analysis of the HNRNPA1, HNRNPA2B1, and HNRNPA3 genes was performed in FALS and of their prion-like domains in SALS patients. Results: Immunostaining of spinal motor neurons of ALS patients with the C9orf72 repeat expansion showed significant mislocalisation of hnRNPA3, and no differences in hnRNPA1 or A2/B1 localisation, compared to controls. No novel or known mutations were identified in HNRNPA1, HNRNPA2B1, or HNRNPA3 in Australian ALS patients. Conclusions: hnRNPA3 pathology was identified in motor neurons of ALS patients with C9orf72 repeat expansions, implicating hnRNPA3 in the pathogenesis of C9orf72-linked ALS. hnRNPA3 warrants further investigation into the pathogenesis of ALS linked to C9orf72. This study also determined that HNRNP mutations are not a common cause of FALS and SALS in Australia.
Journal of neuromuscular diseases | 2017
Eva Kichkin; Archunan Visvanathan; Frank J. Lovicu; Daisy Y. Shu; Shannon J. Das; Stephen W. Reddel; Emily P. McCann; Katharine Y. Zhang; Kelly L. Williams; Ian P. Blair; William D. Phillips
BACKGROUND The L25 mouse line was generated by random genomic insertion of a lens-specific transgene. Inbreeding of L25 hemizygotes revealed an unanticipated spastic phenotype in the hind limbs. OBJECTIVE The goals were to characterize the motor phenotype in the L25 mice and to map the transgene insert site within the mouse genome. METHODS Six pairs of L25+/- mice were repeatedly mated. Beginning at weaning, all progeny were inspected for body weight and motor signs twice weekly until they displayed predefined ethical criteria for termination. The transgene insert site was determined by whole genome sequencing. Western blotting was used to compare the expression levels of beta-IV spectrin protein in the brain. RESULTS Matings of hemizygous L25+/- × L25+/- mice yielded 20% (29/148) affected weanlings, identified by an abnormal retraction of the hind limbs when lifted by the tail, and a fine tremor. Affected mice were less mobile and grew more slowly than wild-type littermates. All affected mice required termination due to >15% loss of body weight (50% survival age 92 days). At the endpoint, mice showed varying degrees of spastic paresis or spastic paralysis localised to the hind limbs. Motor endplates remained fully innervated. Genome sequencing confirmed that the transgene was inserted in the locus of βIV spectrin of L25 mice. Western blotting indicated that this random insertion had greatly reduced the expression of βIV spectrin protein in the affected L25 mice. CONCLUSIONS The results confirm the importance of βIV spectrin for maintaining central motor pathway control of the hind limbs, and provide a developmental time course for the phenotype.
Archive | 2017
Albert Lee; Stephanie L. Rayner; Alana De Luca; Serene S. L. Gwee; Marco Morsch; Vinod Sundaramoorthy; Hamideh Shahheydari; Audrey Ragagnin; Bingyang Shi; Shu Yang; Kelly L. Williams; Emily K. Don; Adam K. Walker; Katharine Y. Zhang; Justin J. Yerbury; Nicholas J. Cole; Julie D. Atkin; Ian P. Blair; Mark P. Molloy; Roger S. Chung