Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily P. McCann is active.

Publication


Featured researches published by Emily P. McCann.


Nature Communications | 2016

CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia

Kelly L. Williams; Simon Topp; Shu Yang; Bradley Smith; Jennifer A. Fifita; Sadaf T. Warraich; Katharine Y. Zhang; Natalie E. Farrawell; Caroline Vance; Xun Hu; Alessandra Chesi; Claire S. Leblond; Albert Lee; Stephanie L. Rayner; Vinod Sundaramoorthy; Carol Dobson-Stone; Mark P. Molloy; Marka van Blitterswijk; Dennis W. Dickson; Ronald C. Petersen; Neill R. Graff-Radford; Bradley F. Boeve; Melissa E. Murray; Cyril Pottier; Emily K. Don; Claire Winnick; Emily P. McCann; Alison L. Hogan; Hussein Daoud; Annie Levert

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are overlapping, fatal neurodegenerative disorders in which the molecular and pathogenic basis remains poorly understood. Ubiquitinated protein aggregates, of which TDP-43 is a major component, are a characteristic pathological feature of most ALS and FTD patients. Here we use genome-wide linkage analysis in a large ALS/FTD kindred to identify a novel disease locus on chromosome 16p13.3. Whole-exome sequencing identified a CCNF missense mutation at this locus. Interrogation of international cohorts identified additional novel CCNF variants in familial and sporadic ALS and FTD. Enrichment of rare protein-altering CCNF variants was evident in a large sporadic ALS replication cohort. CCNF encodes cyclin F, a component of an E3 ubiquitin–protein ligase complex (SCFCyclin F). Expression of mutant CCNF in neuronal cells caused abnormal ubiquitination and accumulation of ubiquitinated proteins, including TDP-43 and a SCFCyclin F substrate. This implicates common mechanisms, linked to protein homeostasis, underlying neuronal degeneration.


Human Molecular Genetics | 2015

Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis

Vinod Sundaramoorthy; Adam K. Walker; Vanessa Tan; Jennifer A. Fifita; Emily P. McCann; Kelly L. Williams; Ian P. Blair; Gilles J. Guillemin; Manal A. Farg; Julie D. Atkin

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder primarily affecting motor neurons. Mutations in optineurin cause a small proportion of familial ALS cases, and wild-type (WT) optineurin is misfolded and forms inclusions in sporadic ALS patient motor neurons. However, it is unknown how optineurin mutation or misfolding leads to ALS. Optineurin acts an adaptor protein connecting the molecular motor myosin VI to secretory vesicles and autophagosomes. Here, we demonstrate that ALS-linked mutations p.Q398X and p.E478G disrupt the association of optineurin with myosin VI, leading to an abnormal diffuse cytoplasmic distribution, inhibition of secretory protein trafficking, endoplasmic reticulum (ER) stress and Golgi fragmentation in motor neuron-like NSC-34 cells. We also provide further insight into the role of optineurin as an autophagy receptor. WT optineurin associated with lysosomes and promoted autophagosome fusion to lysosomes in neuronal cells, implying that it mediates trafficking of lysosomes during autophagy in association with myosin VI. However, either expression of ALS mutant optineurin or small interfering RNA-mediated knockdown of endogenous optineurin blocked lysosome fusion to autophagosomes, resulting in autophagosome accumulation. Together these results indicate that ALS-linked mutations in optineurin disrupt myosin VI-mediated intracellular trafficking processes. In addition, in control human patient tissues, optineurin displayed its normal vesicular localization, but in sporadic ALS patient tissues, vesicles were present in a significantly decreased proportion of motor neurons. Optineurin binding to myosin VI was also decreased in tissue lysates from sporadic ALS spinal cords. This study therefore links several previously described pathological mechanisms in ALS, including defects in autophagy, fragmentation of the Golgi and induction of ER stress, to disruption of optineurin function. These findings also indicate that optineurin-myosin VI dysfunction is a common feature of both sporadic and familial ALS.


Neurobiology of Aging | 2015

Novel TBK1 truncating mutation in a familial amyotrophic lateral sclerosis patient of Chinese origin

Kelly L. Williams; Emily P. McCann; Jennifer A. Fifita; Katharine Y. Zhang; Emma L. Duncan; Paul Leo; Mhairi Marshall; Dominic B. Rowe; Garth A. Nicholson; Ian P. Blair

Missense and frameshift mutations in TRAF family member-associated NF-kappa-B activator (TANK)-binding kinase 1 (TBK1) have been reported in European sporadic and familial amyotrophic lateral sclerosis (ALS) cohorts. To assess the role of TBK1 in ALS patient cohorts of wider ancestry, we have analyzed whole-exome sequence data from an Australian cohort of familial ALS (FALS) patients and controls. We identified a novel TBK1 deletion (c.1197delC) in a FALS patient of Chinese origin. This frameshift mutation (p.L399fs) likely results in a truncated protein that lacks functional domains required for adapter protein binding, as well as protein activation and structural integrity. No novel or reported TBK1 mutations were identified in FALS patients of European ancestry. This is the first report of a TBK1 mutation in an ALS patient of Asian origin and indicates that sequence variations in TBK1 are a rare cause of FALS in Australia.


Neuron | 2017

Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development

Swapna Thomas-Jinu; Patricia M. Gordon; Triona Fielding; Richard Taylor; Bradley Smith; Victoria Snowden; Eric Blanc; Caroline Vance; Simon Topp; Chun Hao Wong; Holger Bielen; Katherine L. Williams; Emily P. McCann; Garth A. Nicholson; Alejandro Pan-Vazquez; Archa H. Fox; Charles S. Bond; William S. Talbot; Ian P. Blair; Christopher Shaw; Corinne Houart

Summary Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ abolishes motor axonal defects, rescuing key transcripts, and restores motility in the paralyzed sfpq null mutants, indicating a non-nuclear processing role in motor axons. Novel variants affecting the conserved coiled-coil domain, so far exclusively found in fALS exomes, specifically affect the ability of SFPQ to localize in axons. They broadly rescue morphology and motility in the zebrafish mutant, but alter motor axon morphology, demonstrating functional requirement for axonal SFPQ. Altogether, we uncover the axonal function of the splicing factor SFPQ in motor development and highlight the importance of the coiled-coil domain in this process. Video Abstract


Neurobiology of Aging | 2015

Mutation analysis of MATR3 in Australian familial amyotrophic lateral sclerosis.

Jennifer A. Fifita; Kelly L. Williams; Emily P. McCann; Aidan O'Brien; Denis C. Bauer; Garth A. Nicholson; Ian P. Blair

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that arises from the progressive degeneration of the motor neurons. Recently, mutations in the matrin 3 (MATR3) gene were described in both ALS and autosomal dominant distal myopathy with vocal cord and pharyngeal weakness. We sought to determine the prevalence of MATR3 mutations in Australian familial ALS (n = 106) using whole exome sequencing. No mutations were identified, indicating that MATR3 mutations are not a common cause of ALS in Australian familial cases with predominately European ancestry.


Clinical Genetics | 2017

The genotype–phenotype landscape of familial amyotrophic lateral sclerosis in Australia

Emily P. McCann; Kelly L. Williams; Jennifer A. Fifita; Ingrid S. Tarr; Jody O'Connor; Dominic B. Rowe; Garth A. Nicholson; Ian P. Blair

Amyotrophic lateral sclerosis (ALS) is a clinically and genetically heterogeneous fatal neurodegenerative disease. Around 10% of ALS cases are hereditary. ALS gene discoveries have provided most of our understanding of disease pathogenesis. We aimed to describe the genetic landscape of ALS in Australia by assessing 1013 Australian ALS patients for known ALS mutations by direct sequencing, whole exome sequencing or repeat primed polymerase chain reaction. Age of disease onset and disease duration were used for genotype–phenotype correlations. We report 60.8% of Australian ALS families in this cohort harbour a known ALS mutation. Hexanucleotide repeat expansions in C9orf72 accounted for 40.6% of families and 2.9% of sporadic patients. We also report ALS families with mutations in SOD1 (13.7%), FUS (2.4%), TARDBP (1.9%), UBQLN2 (.9%), OPTN (.5%), TBK1 (.5%) and CCNF (.5%). We present genotype–phenotype correlations between these genes as well as between gene mutations. Notably, C9orf72 hexanucleotide repeat expansion positive patients experienced significantly later disease onset than ALS mutation patients. Among SOD1 families, p.I114T positive patients had significantly later onset and longer survival. Our report highlights a unique spectrum of ALS gene frequencies among patients from the Australian population, and further, provides correlations between specific ALS mutations with disease onset and/or duration.


Neuron | 2017

Erratum: Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development (Neuron (2017) 94(2) (322–336.e5)(S0896627317302386)(10.1016/j.neuron.2017.03.026))

Swapna Thomas-Jinu; Patricia M. Gordon; Triona Fielding; Richard Taylor; Bradley Smith; Victoria Snowden; Eric Blanc; Caroline Vance; Simon Topp; Chun Hao Wong; Holger Bielen; Kelly L. Williams; Emily P. McCann; Garth A. Nicholson; Alejandro Pan-Vazquez; Archa H. Fox; Charles S. Bond; William S. Talbot; Ian P. Blair; Christopher Shaw; Corinne Houart

Citing this paper Please note that where the full-text provided on Kings Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publishers definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publishers website for any subsequent corrections.


Amyotrophic Lateral Sclerosis | 2017

A novel amyotrophic lateral sclerosis mutation in OPTN induces ER stress and Golgi fragmentation in vitro

Jennifer A. Fifita; Kelly L. Williams; Vinod Sundaramoorthy; Emily P. McCann; Garth A. Nicholson; Julie D. Atkin; Ian P. Blair

Abstract Mutations in the optineurin gene (OPTN) have been identified in a small proportion (<1%) of sporadic and familial ALS cases, and the exact role of optineurin in the pathogenesis of ALS remains unclear. To further examine the role of OPTN in ALS, we sought to identify novel ALS variants in OPTN and examine their potential for pathogenicity in vitro. Whole exome sequence data from 74 familial ALS cases were analysed for the presence of novel OPTN mutations. Pathogenicity was assessed by analysing effects on Golgi fragmentation, endoplasmic reticulum (ER) stress-linked CHOP activation, and cellular localization of optineurin in motor neuron-like NSC-34 cells expressing mutant optineurin. We identified a novel heterozygous missense mutation in OPTN (c.883G > T, p.Val295Phe) in a single familial ALS case. This mutation induced recognized cellular features of ALS pathogenesis including Golgi fragmentation and ER stress in NSC-34 cells. In conclusion, the identification of a novel OPTN mutation in an Australian ALS family, and its capacity to induce ALS-like pathological features in vitro, further strengthens evidence for the role of optineurin in the pathogenesis of ALS.


Neurodegenerative Diseases | 2017

Genetic and pathological assessment of hnRNPA1, hnRNPA2/B1, and hnRNPA3 in familial and sporadic amyotrophic lateral sclerosis

Jennifer A. Fifita; Katharine Y. Zhang; Jasmin Galper; Kelly L. Williams; Emily P. McCann; Alison L. Hogan; Neil F. W. Saunders; Denis C. Bauer; Ingrid S. Tarr; Roger Pamphlett; Garth A. Nicholson; Dominic B. Rowe; Shu Yang; Ian P. Blair

Background: Mutations in the genes encoding the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1 have been reported in a multisystem proteinopathy that includes amyotrophic lateral sclerosis (ALS) and inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia. Mutations were also described in the prion-like domain of hnRNPA1 in patients with classic ALS. Another hnRNP protein, hnRNPA3, has been found to be associated with the ALS/frontotemporal dementia protein C9orf72. Objective: To further assess their role in ALS, we examined these hnRNPs in spinal cord tissue from sporadic (SALS) and familial ALS (FALS) patients, including C9orf72 repeat expansion-positive patients, and controls. We also sought to determine the prevalence of HNRNPA1, HNRNPA2B1, and HNRNPA3 mutations in Australian ALS patients. Methods: Immunostaining was used to assess hnRNPs in ALS patient spinal cords. Mutation analysis of the HNRNPA1, HNRNPA2B1, and HNRNPA3 genes was performed in FALS and of their prion-like domains in SALS patients. Results: Immunostaining of spinal motor neurons of ALS patients with the C9orf72 repeat expansion showed significant mislocalisation of hnRNPA3, and no differences in hnRNPA1 or A2/B1 localisation, compared to controls. No novel or known mutations were identified in HNRNPA1, HNRNPA2B1, or HNRNPA3 in Australian ALS patients. Conclusions: hnRNPA3 pathology was identified in motor neurons of ALS patients with C9orf72 repeat expansions, implicating hnRNPA3 in the pathogenesis of C9orf72-linked ALS. hnRNPA3 warrants further investigation into the pathogenesis of ALS linked to C9orf72. This study also determined that HNRNP mutations are not a common cause of FALS and SALS in Australia.


Journal of neuromuscular diseases | 2017

Postnatal Development of Spasticity Following Transgene Insertion in the Mouse βIV Spectrin Gene (SPTBN4)

Eva Kichkin; Archunan Visvanathan; Frank J. Lovicu; Daisy Y. Shu; Shannon J. Das; Stephen W. Reddel; Emily P. McCann; Katharine Y. Zhang; Kelly L. Williams; Ian P. Blair; William D. Phillips

BACKGROUND The L25 mouse line was generated by random genomic insertion of a lens-specific transgene. Inbreeding of L25 hemizygotes revealed an unanticipated spastic phenotype in the hind limbs. OBJECTIVE The goals were to characterize the motor phenotype in the L25 mice and to map the transgene insert site within the mouse genome. METHODS Six pairs of L25+/- mice were repeatedly mated. Beginning at weaning, all progeny were inspected for body weight and motor signs twice weekly until they displayed predefined ethical criteria for termination. The transgene insert site was determined by whole genome sequencing. Western blotting was used to compare the expression levels of beta-IV spectrin protein in the brain. RESULTS Matings of hemizygous L25+/- × L25+/- mice yielded 20% (29/148) affected weanlings, identified by an abnormal retraction of the hind limbs when lifted by the tail, and a fine tremor. Affected mice were less mobile and grew more slowly than wild-type littermates. All affected mice required termination due to >15% loss of body weight (50% survival age 92 days). At the endpoint, mice showed varying degrees of spastic paresis or spastic paralysis localised to the hind limbs. Motor endplates remained fully innervated. Genome sequencing confirmed that the transgene was inserted in the locus of βIV spectrin of L25 mice. Western blotting indicated that this random insertion had greatly reduced the expression of βIV spectrin protein in the affected L25 mice. CONCLUSIONS The results confirm the importance of βIV spectrin for maintaining central motor pathway control of the hind limbs, and provide a developmental time course for the phenotype.

Collaboration


Dive into the Emily P. McCann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge