Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine A. Cottrill is active.

Publication


Featured researches published by Katherine A. Cottrill.


Circulation | 2012

MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary Hypertension Results of a Network Bioinformatics Approach

Victoria N. Parikh; Richard C. Jin; Sabrina Rabello; Natali Gulbahce; Kevin P. White; Andrew Hale; Katherine A. Cottrill; Rahamthulla S. Shaik; Aaron B. Waxman; Ying-Yi Zhang; Bradley A. Maron; Jochen C. Hartner; Yuko Fujiwara; Stuart H. Orkin; Kathleen J. Haley; Albert-László Barabási; Joseph Loscalzo; Stephen Y. Chan

Background— Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. Methods and Results— Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21–null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. Conclusions— A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH.Background— Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. Methods and Results— Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21 –null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. Conclusions— A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH. # Clinical Perspective {#article-title-52}


Journal of Clinical Investigation | 2014

Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension

Thomas Bertero; Yu Lu; Sofia Annis; Andrew Hale; Balkrishen Bhat; Rajan Saggar; Rajeev Saggar; W. Dean Wallace; David J. Ross; Sara O. Vargas; Brian B. Graham; Rahul Kumar; Stephen M. Black; Sohrab Fratz; Jeffrey R. Fineman; James West; Kathleen J. Haley; Aaron B. Waxman; B. Nelson Chau; Katherine A. Cottrill; Stephen Y. Chan

Development of the vascular disease pulmonary hypertension (PH) involves disparate molecular pathways that span multiple cell types. MicroRNAs (miRNAs) may coordinately regulate PH progression, but the integrative functions of miRNAs in this process have been challenging to define with conventional approaches. Here, analysis of the molecular network architecture specific to PH predicted that the miR-130/301 family is a master regulator of cellular proliferation in PH via regulation of subordinate miRNA pathways with unexpected connections to one another. In validation of this model, diseased pulmonary vessels and plasma from mammalian models and human PH subjects exhibited upregulation of miR-130/301 expression. Evaluation of pulmonary arterial endothelial cells and smooth muscle cells revealed that miR-130/301 targeted PPARγ with distinct consequences. In endothelial cells, miR-130/301 modulated apelin-miR-424/503-FGF2 signaling, while in smooth muscle cells, miR-130/301 modulated STAT3-miR-204 signaling to promote PH-associated phenotypes. In murine models, induction of miR-130/301 promoted pathogenic PH-associated effects, while miR-130/301 inhibition prevented PH pathogenesis. Together, these results provide insight into the systems-level regulation of miRNA-disease gene networks in PH with broad implications for miRNA-based therapeutics in this disease. Furthermore, these findings provide critical validation for the evolving application of network theory to the discovery of the miRNA-based origins of PH and other diseases.


Journal of Clinical Investigation | 2016

Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension

Thomas Bertero; William M. Oldham; Katherine A. Cottrill; Sabrina Pisano; Rebecca R. Vanderpool; Qiujun Yu; Jingsi Zhao; Yi-Yin Tai; Ying Tang; Ying-Yi Zhang; Sofiya Rehman; Masataka Sugahara; Zhi Qi; John Gorcsan; Sara O. Vargas; Rajan Saggar; Rajeev Saggar; W. Dean Wallace; David J. Ross; Kathleen J. Haley; Aaron B. Waxman; Victoria N. Parikh; Teresa De Marco; Priscilla Y. Hsue; Alison Morris; Marc A. Simon; Karen A. Norris; Cedric Gaggioli; Joseph Loscalzo; Joshua P. Fessel

Dysregulation of vascular stiffness and cellular metabolism occurs early in pulmonary hypertension (PH). However, the mechanisms by which biophysical properties of the vascular extracellular matrix (ECM) relate to metabolic processes important in PH remain undefined. In this work, we examined cultured pulmonary vascular cells and various types of PH-diseased lung tissue and determined that ECM stiffening resulted in mechanoactivation of the transcriptional coactivators YAP and TAZ (WWTR1). YAP/TAZ activation modulated metabolic enzymes, including glutaminase (GLS1), to coordinate glutaminolysis and glycolysis. Glutaminolysis, an anaplerotic pathway, replenished aspartate for anabolic biosynthesis, which was critical for sustaining proliferation and migration within stiff ECM. In vitro, GLS1 inhibition blocked aspartate production and reprogrammed cellular proliferation pathways, while application of aspartate restored proliferation. In the monocrotaline rat model of PH, pharmacologic modulation of pulmonary vascular stiffness and YAP-dependent mechanotransduction altered glutaminolysis, pulmonary vascular proliferation, and manifestations of PH. Additionally, pharmacologic targeting of GLS1 in this model ameliorated disease progression. Notably, evaluation of simian immunodeficiency virus-infected nonhuman primates and HIV-infected subjects revealed a correlation between YAP/TAZ-GLS activation and PH. These results indicate that ECM stiffening sustains vascular cell growth and migration through YAP/TAZ-dependent glutaminolysis and anaplerosis, and thereby link mechanical stimuli to dysregulated vascular metabolism. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in PH.


European Journal of Clinical Investigation | 2013

Metabolic dysfunction in pulmonary hypertension: the expanding relevance of the Warburg effect

Katherine A. Cottrill; Stephen Y. Chan

Pulmonary hypertension (PH) is an enigmatic vascular syndrome characterized by increased pulmonary arterial pressure and adverse remodelling of the pulmonary arterioles and often of the right ventricle. Drawing parallels with tumourigenesis, recent endeavours have explored the relationship between metabolic dysregulation and PH pathogenesis.


Cell Reports | 2015

Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit

Thomas Bertero; Katherine A. Cottrill; Yu Lu; Christina Mallarino Haeger; Paul B. Dieffenbach; Sofia Annis; Andrew Hale; Balkrishen Bhat; Vivek Kaimal; Ying Yi Zhang; Brian B. Graham; Rahul Kumar; Rajan Saggar; Rajeev Saggar; W. Dean Wallace; David J. Ross; Stephen M. Black; Sohrab Fratz; Jeffrey R. Fineman; Sara O. Vargas; Kathleen J. Haley; Aaron B. Waxman; B. Nelson Chau; Stephen Y. Chan

Pulmonary hypertension (PH) is a deadly vascular disease with enigmatic molecular origins. We found that vascular extracellular matrix (ECM) remodeling and stiffening are early and pervasive processes that promote PH. In multiple pulmonary vascular cell types, such ECM stiffening induced the microRNA-130/301 family via activation of the co-transcription factors YAP and TAZ. MicroRNA-130/301 controlled a PPAR?-APOE-LRP8 axis, promoting collagen deposition and LOX-dependent remodeling and further upregulating YAP/TAZ via a mechanoactive feedback loop. In turn, ECM remodeling controlled pulmonary vascular cell crosstalk via such mechanotransduction, modulation of secreted vasoactive effectors, and regulation of associated microRNA pathways. In vivo, pharmacologic inhibition of microRNA-130/301, APOE, or LOX activity ameliorated ECM remodeling and PH. Thus, ECM remodeling, as controlled by the YAP/TAZ-miR-130/301 feedback circuit, is an early PH trigger and offers combinatorial therapeutic targets for this devastating disease.


Journal of Biological Chemistry | 2015

The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension.

Thomas Bertero; Katherine A. Cottrill; Adrienn Krauszman; Yu Lu; Sofia Annis; Andrew Hale; Balkrishen Bhat; Aaron B. Waxman; B. Nelson Chau; Wolfgang M. Kuebler; Stephen Y. Chan

Background: The microRNA-130/301 family regulates pulmonary hypertension (PH), but its breadth of activity remains undefined. Results: Predicted by network analysis, microRNA-130/301 members regulate vasoactive factors such as endothelin-1 for pulmonary vascular cross-talk. Conclusion: The microRNA-130/301 family promotes vasoconstriction in PH. Significance: This microRNA-based mechanism of vascular cross-talk is central to the systems-wide actions of microRNA-130/301 in PH. Pulmonary hypertension (PH) is a complex disorder, spanning several known vascular cell types. Recently, we identified the microRNA-130/301 (miR-130/301) family as a regulator of multiple pro-proliferative pathways in PH, but the true breadth of influence of the miR-130/301 family across cell types in PH may be even more extensive. Here, we employed targeted network theory to identify additional pathogenic pathways regulated by miR-130/301, including those involving vasomotor tone. Guided by these predictions, we demonstrated, via gain- and loss-of-function experimentation in vitro and in vivo, that miR-130/301-specific control of the peroxisome proliferator-activated receptor γ regulates a panel of vasoactive factors communicating between diseased pulmonary vascular endothelial and smooth muscle cells. Of these, the vasoconstrictive factor endothelin-1 serves as an integral point of communication between the miR-130/301-peroxisome proliferator-activated receptor γ axis in endothelial cells and contractile function in smooth muscle cells. Thus, resulting from an in silico analysis of the architecture of the PH disease gene network coupled with molecular experimentation in vivo, these findings clarify the expanded role of the miR-130/301 family in the global regulation of PH. They further emphasize the importance of molecular cross-talk among the diverse cellular populations involved in PH.


Scientific Reports | 2016

A YAP/TAZ-miR-130/301 molecular circuit exerts systems-level control of fibrosis in a network of human diseases and physiologic conditions

Thomas Bertero; Katherine A. Cottrill; Sofia Annis; Balkrishen Bhat; Bernadette R. Gochuico; Juan C. Osorio; Ivan O. Rosas; Kathleen J. Haley; Kathleen E. Corey; Raymond T. Chung; B. Nelson Chau; Stephen Y. Chan

The molecular origins of fibrosis affecting multiple tissue beds remain incompletely defined. Previously, we delineated the critical role of the control of extracellular matrix (ECM) stiffening by the mechanosensitive microRNA-130/301 family, as activated by the YAP/TAZ co-transcription factors, in promoting pulmonary hypertension (PH). We hypothesized that similar mechanisms may dictate fibrosis in other tissue beds beyond the pulmonary vasculature. Employing an in silico combination of microRNA target prediction, transcriptomic analysis of 137 human diseases and physiologic states, and advanced gene network modeling, we predicted the microRNA-130/301 family as a master regulator of fibrotic pathways across a cohort of seemingly disparate diseases and conditions. In two such diseases (pulmonary fibrosis and liver fibrosis), inhibition of microRNA-130/301 prevented the induction of ECM modification, YAP/TAZ, and downstream tissue fibrosis. Thus, mechanical forces act through a central feedback circuit between microRNA-130/301 and YAP/TAZ to sustain a common fibrotic phenotype across a network of human physiologic and pathophysiologic states. Such re-conceptualization of interconnections based on shared systems of disease and non-disease gene networks may have broad implications for future convergent diagnostic and therapeutic strategies.


Antioxidants & Redox Signaling | 2014

Hypoxamirs and Mitochondrial Metabolism

Katherine A. Cottrill; Stephen Y. Chan; Joseph Loscalzo

SIGNIFICANCE Chronic hypoxia can drive maladaptive responses in numerous organ systems, leading to a multitude of chronic mammalian diseases. Oxygen homeostasis is intimately linked with mitochondrial metabolism, and dysfunction in these systems can combine to form the backbone of hypoxic-ischemic injury in multiple tissue beds. Increased appreciation of the crucial roles of hypoxia-associated miRNA (hypoxamirs) in metabolism adds a new dimension to our understanding of the regulation of hypoxia-induced disease. RECENT ADVANCES Myriad factors related to glycolysis (e.g., aldolase A and hexokinase II), tricarboxylic acid cycle function (e.g., glutaminase and iron-sulfur cluster assembly protein 1/2), and apoptosis (e.g., p53) have been recently implicated as targets of hypoxamirs. In addition, several hypoxamirs have been implicated in the regulation of the master transcription factor of hypoxia, hypoxia-inducible factor-1α, clarifying how the cellular program of hypoxia is sustained and resolved. CRITICAL ISSUES Central to the discussion of metabolic change in hypoxia is the Warburg effect, a shift toward anaerobic metabolism that persists after normal oxygen levels have been restored. Many newly discovered targets of hypoxia-driven microRNA converge on pathways known to be involved in this pathological phenomenon and the apoptosis-resistant phenotype associated with it. FUTURE DIRECTIONS The often synergistic functions of miRNA may make them ideal therapeutic targets. The use of antisense inhibitors is currently being considered in diseases in which hypoxia and metabolic dysregulation predominate. In addition, exploration of pleiotripic miRNA functions will likely continue to offer unique insights into the mechanistic relationships of their downstream target pathways and associated hypoxic phenotypes.


Oncotarget | 2017

Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells

Hilaire C. Lam; Heng Jia Liu; Christian V. Baglini; Harilaos Filippakis; Nicola Alesi; Julie Nijmeh; Heng Du; Alicia Llorente Lope; Katherine A. Cottrill; Adam Handen; John M. Asara; David J. Kwiatkowski; Issam Ben-Sahra; William M. Oldham; Stephen Y. Chan; Elizabeth P. Henske

mTORC1 hyperactivation drives the multi-organ hamartomatous disease tuberous sclerosis complex (TSC). Rapamycin inhibits mTORC1, inducing partial tumor responses; however, the tumors regrow following treatment cessation. We discovered that the oncogenic miRNA, miR-21, is increased in Tsc2-deficient cells and, surprisingly, further increased by rapamycin. To determine the impact of miR-21 in TSC, we inhibited miR-21 in vitro. miR-21 inhibition significantly repressed the tumorigenic potential of Tsc2-deficient cells and increased apoptosis sensitivity. Tsc2-deficient cells’ clonogenic and anchorage independent growth were reduced by ∼50% (p<0.01) and ∼75% (p<0.0001), respectively, and combined rapamycin treatment decreased soft agar growth by ∼90% (p<0.0001). miR-21 inhibition also increased sensitivity to apoptosis. Through a network biology-driven integration of RNAseq data, we discovered that miR-21 promotes mitochondrial adaptation and homeostasis in Tsc2-deficient cells. miR-21 inhibition reduced mitochondrial polarization and function in Tsc2-deficient cells, with and without co-treatment with rapamycin. Importantly, miR-21 inhibition limited Tsc2-deficient tumor growth in vivo, reducing tumor size by approximately 3-fold (p<0.0001). When combined with rapamcyin, miR-21 inhibition showed even more striking efficacy, both during treatment and after treatment cessation, with a 4-fold increase in median survival following rapamycin cessation (p=0.0008). We conclude that miR-21 promotes mTORC1-driven tumorigenesis via a mechanism that involves the mitochondria, and that miR-21 is a potential therapeutic target for TSC-associated hamartomas and other mTORC1-driven tumors, with the potential for synergistic efficacy when combined with rapalogs.


American Journal of Physiology-cell Physiology | 2014

Investigating pulmonary arterial hypertension from "stem" to stern. Focus on "Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension"

Katherine A. Cottrill; Stephen Y. Chan

FOR DECADES, PRIMARY CELL culture in vitro and animal models in vivo have remained the cornerstones of functional modeling and drug discovery in the context of human disease. While both have proved to be invaluable tools, they are inherently limited in their ability to replicate human pathology. Primary cells are often difficult to maintain for long periods in culture, and animal models often provide little insight into speciesspecific facets of disease. Induced pluripotent stem (iPS) cells have earned tremendous attention in the last decade as a novel model system for the study of human pathobiology. In 2006, seminal work by Takahashi and Yamanaka (8) revealed that the retroviral gene transfer of four transcription factors (Oct3/4, Sox2, Klf4, and c-Myc) was sufficient to induce a pluripotent state in fibroblasts from both embryonic and adult mice. These findings were later replicated using human fibroblasts and blood lymphocytes (2). The resulting cells can be

Collaboration


Dive into the Katherine A. Cottrill's collaboration.

Top Co-Authors

Avatar

Stephen Y. Chan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Aaron B. Waxman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew Hale

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kathleen J. Haley

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Joseph Loscalzo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sofia Annis

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Thomas Bertero

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley A. Maron

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge