Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine A. Pillman is active.

Publication


Featured researches published by Katherine A. Pillman.


Cell | 2015

The RNA Binding Protein Quaking Regulates Formation of circRNAs

Simon J. Conn; Katherine A. Pillman; John Toubia; Vanessa Conn; Marika Salmanidis; Caroline A. Phillips; Suraya Roslan; Andreas W. Schreiber; Philip A. Gregory; Gregory J. Goodall

Circular RNAs (circRNAs), formed by non-sequential back-splicing of pre-mRNA transcripts, are a widespread form of non-coding RNA in animal cells. However, it is unclear whether the majority of circRNAs represent splicing by-products without function or are produced in a regulated manner to carry out specific cellular functions. We show that hundreds of circRNAs are regulated during human epithelial-mesenchymal transition (EMT) and find that the production of over one-third of abundant circRNAs is dynamically regulated by the alternative splicing factor, Quaking (QKI), which itself is regulated during EMT. Furthermore, by modulating QKI levels, we show the effect on circRNA abundance is dependent on intronic QKI binding motifs. Critically, the addition of QKI motifs is sufficient to induce de novo circRNA formation from transcripts that are normally linearly spliced. These findings demonstrate circRNAs are both purposefully synthesized and regulated by cell-type specific mechanisms, suggesting they play specific biological roles in EMT.


The EMBO Journal | 2014

Genome‐wide identification of miR‐200 targets reveals a regulatory network controlling cell invasion

Cameron P. Bracken; Xiaochun Li; Josephine A. Wright; David Lawrence; Katherine A. Pillman; Marika Salmanidis; Matthew A Anderson; B. Kate Dredge; Philip A. Gregory; Anna Tsykin; Corine T. Neilsen; Daniel W. Thomson; Andrew G. Bert; Joanne M. Leerberg; Alpha S. Yap; Kirk B. Jensen; Yeesim Khew-Goodall; Gregory J. Goodall

The microRNAs of the miR‐200 family maintain the central characteristics of epithelia and inhibit tumor cell motility and invasiveness. Using the Ago‐HITS‐CLIP technology for transcriptome‐wide identification of direct microRNA targets in living cells, along with extensive validation to verify the reliability of the approach, we have identified hundreds of miR‐200a and miR‐200b targets, providing insights into general features of miRNA target site selection. Gene ontology analysis revealed a predominant effect of miR‐200 targets in widespread coordinate control of actin cytoskeleton dynamics. Functional characterization of the miR‐200 targets indicates that they constitute subnetworks that underlie the ability of cancer cells to migrate and invade, including coordinate effects on Rho‐ROCK signaling, invadopodia formation, MMP activity, and focal adhesions. Thus, the miR‐200 family maintains the central characteristics of the epithelial phenotype by acting on numerous targets at multiple levels, encompassing both cytoskeletal effectors that control actin filament organization and dynamics, and upstream signals that locally regulate the cytoskeleton to maintain cell morphology and prevent cell migration.


The International Journal of Biochemistry & Cell Biology | 2014

Direct transcriptional regulation by nuclear microRNAs

Marika Salmanidis; Katherine A. Pillman; Gregory J. Goodall; Cameron P. Bracken

The function of microRNAs is well characterized in the cytoplasm, where they direct an Argonaute-containing complex to target and repress mRNAs. More recently, regulatory roles for microRNAs and Argonaute have also been reported in the nucleus where microRNAs guide Argonaute to target gene promoters and directly regulate transcription in either a positive or a negative manner. Deep sequencing has revealed a high abundance of endogenous microRNAs within the nucleus, and in silico target prediction suggests thousands of potential microRNA:promoter interaction sites. The predicted high frequency of miRNA:promoter interactions is supported by chromatin immunoprecipitation, indicating the microRNA-dependent recruitment of Argonaute to thousands of transcriptional start sites and the subsequent regulation of RNA polymerase-II occupancy and chromatin modifiers. In this review we discuss the evidence for, and mechanisms associated with, direct transcriptional regulation by microRNAs which may represent a significant and largely unexplored aspect of microRNA function. This article is part of a Directed Issue entitled: The non-coding RNA revolution.


Nucleic Acids Research | 2015

Assessing the gene regulatory properties of Argonaute-bound small RNAs of diverse genomic origin.

Daniel W. Thomson; Katherine A. Pillman; Matthew L. Anderson; David Lawrence; John Toubia; Gregory J. Goodall; Cameron P. Bracken

High-throughput sequencing reveals an abundance of microRNA-sized fragments derived from larger non-coding RNAs. Roles for these small RNAs in gene silencing are suggested by their co-precipitation with Argonaute, the microRNA effector protein, though the extent to which they suppress gene expression endogenously remains unclear. To address this, we used luciferase reporters to determine the endogenous functionality of small RNAs from a diverse range of sources. We demonstrate small RNAs derived from snoRNAs have the capacity to act in a microRNA-like manner, though we note the vast majority of these are bound to Argonaute at levels below that required for detectable silencing activity. We show Argonaute exhibits a high degree of selectivity for the small RNAs with which it interacts and note that measuring Argonaute-associated levels is a better indicator of function than measuring total expression. Although binding to Argonaute at sufficient levels is necessary for demonstrating microRNA functionality in our reporter assay, this alone is not enough as some small RNAs derived from other non-coding RNAs (tRNAs, rRNAs, Y-RNAs) are associated with Argonaute at very high levels yet do not serve microRNA-like roles.


PLOS ONE | 2013

Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat.

Omid Eini; Nannan Yang; Tatiana Pyvovarenko; Katherine A. Pillman; Natalia Bazanova; Natalia Tikhomirov; Serik Eliby; Neil J. Shirley; Shoba Sivasankar; Scott V. Tingey; Peter Langridge; Maria Hrmova; Sergiy Lopato

Expression of the wheat dehydrin gene Cor410b is induced several fold above its non-stressed levels upon exposure to stresses such as cold, drought and wounding. Deletion analysis of the TdCor410b promoter revealed a single functional C-repeat (CRT) element. Seven transcription factors (TFs) were shown to bind to this CRT element using yeast one-hybrid screens of wheat and barley cDNA libraries, of which only one belonged to the DREB class of TFs. The remaining six encoded ethylene response factors (ERFs) belong to three separate subfamilies. Analysis of binding selectivity of these TFs indicated that all seven could bind to the CRT element (GCCGAC), and that three of the six ERFs could bind both to the CRT element and the ethylene-responsive GCC-box (GCCGCC). The TaERF4 subfamily members specifically bound the CRT element, and did not bind either the GCC-box or DRE element (ACCGAC). Molecular modeling and site-directed mutagenesis identified a single residue Pro42 in the Apetala2 (AP2) domain of TaERF4-like proteins that is conserved in monocotyledonous plants and is responsible for the recognition selectivity of this subfamily. We suggest that both DREB and ERF proteins regulate expression of the Cor410b gene through a single, critical CRT element. Members of the TaERF4 subfamily are specific, positive regulators of Cor410b gene expression.


Plant Molecular Biology | 2014

Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation.

Zoran Jeknić; Katherine A. Pillman; Taniya Dhillon; Jeffrey S. Skinner; Ottó Veisz; Alfonso Cuesta-Marcos; Patrick M. Hayes; Andrew K. Jacobs; Tony H. H. Chen; Eric J. Stockinger

C-Repeat Binding Factors (CBFs) are DNA-binding transcriptional activators of gene pathways imparting freezing tolerance. Poaceae contain three CBF subfamilies, two of which, HvCBF3/CBFIII and HvCBF4/CBFIV, are unique to this taxon. To gain mechanistic insight into HvCBF4/CBFIV CBFs we overexpressed Hv-CBF2A in spring barley (Hordeum vulgare) cultivar ‘Golden Promise’. The Hv-CBF2A overexpressing lines exhibited stunted growth, poor yield, and greater freezing tolerance compared to non-transformed ‘Golden Promise’. Differences in freezing tolerance were apparent only upon cold acclimation. During cold acclimation freezing tolerance of the Hv-CBF2A overexpressing lines increased more rapidly than that of ‘Golden Promise’ and paralleled the freezing tolerance of the winter hardy barley ‘Dicktoo’. Transcript levels of candidate CBF target genes, COR14B and DHN5 were increased in the overexpressor lines at warm temperatures, and at cold temperatures they accumulated to much higher levels in the Hv-CBF2A overexpressors than in ‘Golden Promise’. Hv-CBF2A overexpression also increased transcript levels of other CBF genes at FROST RESISTANCE-H2-H2 (FR-H2) possessing CRT/DRE sites in their upstream regions, the most notable of which was CBF12. CBF12 transcript levels exhibited a relatively constant incremental increase above levels in ‘Golden Promise’ both at warm and cold. These data indicate that Hv-CBF2A activates target genes at warm temperatures and that transcript accumulation for some of these targets is greatly enhanced by cold temperatures.


PLOS ONE | 2015

p53 Represses the Oncogenic Sno-MiR-28 Derived from a SnoRNA

Feng Yu; Cameron P. Bracken; Katherine A. Pillman; David Lawrence; Gregory J. Goodall; David F. Callen; Paul M. Neilsen

p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs) that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs) are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.


Nucleic Acids Research | 2017

Naturally existing isoforms of miR-222 have distinct functions

Feng Yu; Katherine A. Pillman; Corine T. Neilsen; John Toubia; David Lawrence; Anna Tsykin; Michael P. Gantier; David F. Callen; Gregory J. Goodall; Cameron P. Bracken

Abstract Deep-sequencing reveals extensive variation in the sequence of endogenously expressed microRNAs (termed ‘isomiRs’) in human cell lines and tissues, especially in relation to the 3′ end. From the immunoprecipitation of the microRNA-binding protein Argonaute and the sequencing of associated small RNAs, we observe extensive 3′-isomiR variation, including for miR-222 where the majority of endogenously expressed miR-222 is extended by 1–5 nt compared to the canonical sequence. We demonstrate this 3′ heterogeneity has dramatic implications for the phenotype of miR-222 transfected cells, with longer isoforms promoting apoptosis in a size (but not 3′ sequence)-dependent manner. The transfection of longer miR-222 isomiRs did not induce an interferon response, but did downregulate the expression of many components of the pro-survival PI3K-AKT pathway including PIK3R3, a regulatory subunit whose knockdown phenocopied the expression of longer 222 isoforms in terms of apoptosis and the inhibition of other PI3K-AKT genes. As this work demonstrates the capacity for 3′ isomiRs to mediate differential functions, we contend more attention needs to be given to 3′ variance given the prevalence of this class of isomiR.


The EMBO Journal | 2018

miR‐200/375 control epithelial plasticity‐associated alternative splicing by repressing the RNA‐binding protein Quaking

Katherine A. Pillman; Caroline A. Phillips; Suraya Roslan; John Toubia; B. Kate Dredge; Andrew G. Bert; Rachael Lumb; Daniel P. Neumann; Xiaochun Li; Simon J. Conn; Dawei Liu; Cameron P. Bracken; David Lawrence; Nataly Stylianou; Andreas W. Schreiber; Wayne D. Tilley; Brett G. Hollier; Yeesim Khew-Goodall; Luke A. Selth; Gregory J. Goodall; Philip A. Gregory

Members of the miR‐200 family are critical gatekeepers of the epithelial state, restraining expression of pro‐mesenchymal genes that drive epithelial–mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR‐200c and another epithelial‐enriched miRNA, miR‐375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA‐binding protein Quaking (QKI). During EMT, QKI‐5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI‐5 is both necessary and sufficient to direct EMT‐associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial‐derived cancer types. Importantly, several actin cytoskeleton‐associated genes are directly targeted by both QKI and miR‐200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT. These findings demonstrate the existence of a miR‐200/miR‐375/QKI axis that impacts cancer‐associated epithelial cell plasticity through widespread control of alternative splicing.


bioRxiv | 2017

Post-Transcriptional Control Of EMT Is Coordinated Through Combinatorial Targeting By Multiple microRNAs

Joseph Cursons; Katherine A. Pillman; Kaitlin G. Scheer; Philip A. Gregory; Momeneh Foroutan; Soroor Hediyeh Zadeh; John Toubia; Edmund J. Crampin; Gregory J. Goodall; Cameron P. Bracken; Melissa J. Davis

Epithelial-mesenchymal transition (EMT) is a process whereby cells undergo reversible phenotypic change, losing epithelial characteristics and acquiring mesenchymal attributes. While EMT underlies normal, physiological programs in embryonic tissue development and adult wound healing, it also contributes to cancer progression by facilitating metastasis and altering drug sensitivity. Using a cell model of EMT (human mammary epithelial (HMLE) cells), we show that miRNAs act as an additional regulatory layer over and above the activity of the transcription factors with which they are closely associated. In this context, miRNAs serve to both enhance expression changes for genes with EMT function, whilst simultaneously reducing transcriptional noise in non-EMT genes. We find that members of the polycistronic miR-200c~141 and miR-183~182 clusters (which are decreased during HMLE cell EMT and are associated with epithelial gene expression in breast cancer patients) co-regulate common targets and pathways to enforce an epithelial phenotype. We demonstrate their combinatorial effects are apparent much closer to endogenous expression levels (and orders of magnitude lower than used in most studies). Importantly, the low levels of combinatorial miRNAs that are required to exert biological function ameliorate the “off-target” effects on gene expression that are a characteristic of supra-physiologic miRNA manipulation. We argue that high levels of over-expression characteristic of many miRNA functional studies have led to an over-estimation of the effect of many miRNAs in EMT regulation, with over 130 individual miRNAs directly implicated as drivers of EMT. We propose that the functional effects of co-regulated miRNAs that we demonstrate here more-accurately reflects the endogenous post-transcriptional regulation of pathways, networks and processes, and illustrates that the post-transcriptional miRNA regulatory network is fundamentally cooperative.

Collaboration


Dive into the Katherine A. Pillman's collaboration.

Top Co-Authors

Avatar

Gregory J. Goodall

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Toubia

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip A. Gregory

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Marika Salmanidis

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Bert

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar

Anna Tsykin

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge