Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine E. Perkey is active.

Publication


Featured researches published by Katherine E. Perkey.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues

Courtney V. Fletcher; Kathryn Staskus; Stephen W. Wietgrefe; Meghan Rothenberger; Cavan Reilly; Jeffrey G. Chipman; Greg J. Beilman; Alexander Khoruts; Ann Thorkelson; Thomas E. Schmidt; Jodi Anderson; Katherine E. Perkey; Mario Stevenson; Alan S. Perelson; Ashley T. Haase; Timothy W. Schacker

Significance We show that HIV continues to replicate in the lymphatic tissues of some individuals taking antiretroviral regimens considered fully suppressive, based on undetectable viral loads in peripheral blood, and that one mechanism for persistent replication in lymphatic tissues is the lower concentrations of the antiretroviral drugs in those tissues compared with peripheral blood. These findings are significant because they provide a rationale and framework for testing the efficacy of new agents and combinations of drugs that will fully suppress replication in lymphatic tissues. More suppressive regimens could improve immune reconstitution, as well as provide the effective regimens needed for functional cure and eradication of infection. Antiretroviral therapy can reduce HIV-1 to undetectable levels in peripheral blood, but the effectiveness of treatment in suppressing replication in lymphoid tissue reservoirs has not been determined. Here we show in lymph node samples obtained before and during 6 mo of treatment that the tissue concentrations of five of the most frequently used antiretroviral drugs are much lower than in peripheral blood. These lower concentrations correlated with continued virus replication measured by the slower decay or increases in the follicular dendritic cell network pool of virions and with detection of viral RNA in productively infected cells. The evidence of persistent replication associated with apparently suboptimal drug concentrations argues for development and evaluation of novel therapeutic strategies that will fully suppress viral replication in lymphatic tissues. These strategies could avert the long-term clinical consequences of chronic immune activation driven directly or indirectly by low-level viral replication to thereby improve immune reconstitution.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption

Meghan Rothenberger; Brandon F. Keele; Stephen W. Wietgrefe; Courtney V. Fletcher; Gregory J. Beilman; Jeffrey G. Chipman; Alexander Khoruts; Jacob D. Estes; Jodi Anderson; Samuel P. Callisto; Thomas E. Schmidt; Ann Thorkelson; Cavan Reilly; Katherine E. Perkey; Thomas Reimann; Netanya S. Utay; Krystelle Nganou Makamdop; Mario Stevenson; Ashley T. Haase; Timothy W. Schacker

Significance Antiretroviral therapy (ART) effectively suppresses HIV replication; however, treatment cannot be stopped, because latently infected CD4+ T cells will rekindle infection. As one estimate of the size of the pool of latently infected cells that must be purged for cure, we asked whether recrudescent infection is the result of reactivation from one or a larger number latently infected cells. We briefly stopped ART in fully suppressed patients to see how widespread new infections were in the lymphoid tissues (LTs) and how diverse rebounding/founder viruses were in peripheral blood. Recrudescent infection was detectable in multiple different LTs, and the population was genetically diverse, consistent with reactivation from a larger number of cells. These findings underscore the challenges facing strategies to eradicate HIV infection. Antiretroviral therapy (ART) suppresses HIV replication in most individuals but cannot eradicate latently infected cells established before ART was initiated. Thus, infection rebounds when treatment is interrupted by reactivation of virus production from this reservoir. Currently, one or a few latently infected resting memory CD4 T cells are thought be the principal source of recrudescent infection, but this estimate is based on peripheral blood rather than lymphoid tissues (LTs), the principal sites of virus production and persistence before initiating ART. We, therefore, examined lymph node (LN) and gut-associated lymphoid tissue (GALT) biopsies from fully suppressed subjects, interrupted therapy, monitored plasma viral load (pVL), and repeated biopsies on 12 individuals as soon as pVL became detectable. Isolated HIV RNA-positive (vRNA+) cells were detected by in situ hybridization in LTs obtained before interruption in several patients. After interruption, multiple foci of vRNA+ cells were detected in 6 of 12 individuals as soon as pVL was measureable and in some subjects, in more than one anatomic site. Minimal estimates of the number of rebounding/founder (R/F) variants were determined by single-gene amplification and sequencing of viral RNA or DNA from peripheral blood mononuclear cells and plasma obtained at or just before viral recrudescence. Sequence analysis revealed a large number of R/F viruses representing recrudescent viremia from multiple sources. Together, these findings are consistent with the origins of recrudescent infection by reactivation from many latently infected cells at multiple sites. The inferred large pool of cells and sites to rekindle recrudescent infection highlights the challenges in eradicating HIV.


PLOS Pathogens | 2014

Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART

Paul W. Denton; Julie M. Long; Stephen W. Wietgrefe; Craig Sykes; Rae Ann Spagnuolo; Olivia D. Snyder; Katherine E. Perkey; Nancie M. Archin; Shailesh K. Choudhary; Kuo Yang; Michael G. Hudgens; Ira Pastan; Ashley T. Haase; Angela D. M. Kashuba; Edward A. Berger; David M. Margolis; J. Victor Garcia

Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies.


Pathogens and Immunity | 2016

Defining HIV and SIV Reservoirs in Lymphoid Tissues

Claire Deleage; Stephen W. Wietgrefe; Gregory Q. Del Prete; David R. Morcock; Xing Pei Hao; Michael Piatak; Julian W. Bess; Jodi Anderson; Katherine E. Perkey; Cavan Reilly; Joseph M. McCune; Ashley T. Haase; Jeffrey D. Lifson; Timothy W. Schacker; Jacob D. Estes

A primary obstacle to an HIV-1 cure is long-lived viral reservoirs, which must be eliminated or greatly reduced. Cure strategies have largely focused on monitoring changes in T cell reservoirs in peripheral blood (PB), even though the lymphoid tissues (LT) are primary sites for viral persistence. To track and discriminate viral reservoirs within tissue compartments we developed a specific and sensitive next-generation in situ hybridization approach to detect vRNA, including vRNA+ cells and viral particles (“RNAscope”), vDNA+ cells (“DNAscope”) and combined vRNA and vDNA with immunohistochemistry to detect and phenotype active and latently infected cells in the same tissue section. RNAscope is highly sensitive with greater speed of analysis compared to traditional in situ hybridization. The highly sensitive and specific DNAscope detected SIV/HIV vDNA+ cells, including duplexed detection of vDNA and vRNA or immunophenotypic markers in the same section. Analysis of LT samples from macaques prior to and during combination antiretroviral therapy demonstrated that B cell follicles are an important anatomical compartment for both latent and active viral persistence during treatment. These new tools should allow new insights into viral reservoir biology and evaluation of cure strategies.


Journal of Immunology | 2014

Live Simian Immunodeficiency Virus Vaccine Correlate of Protection: Immune Complex–Inhibitory Fc Receptor Interactions That Reduce Target Cell Availability

Anthony J. Smith; Stephen W. Wietgrefe; Liang Shang; Cavan Reilly; Peter J. Southern; Katherine E. Perkey; Lijie Duan; Heinz Kohler; Sybille Müller; James E. Robinson; John V. Carlis; Qingsheng Li; R. Paul Johnson; Ashley T. Haase

Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicenter in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer Ab production and neonatal FcR-mediated concentration of these Abs on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. In this study, we identify blocking CD4+ T cell recruitment to thereby inhibit local expansion of infected founder populations as a second correlate of protection. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex–FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine.


Mucosal Immunology | 2017

Epithelium-innate immune cell axis in mucosal responses to SIV

Liang Shang; Lijie Duan; Katherine E. Perkey; Stephen W. Wietgrefe; Mary Zupancic; Alexander Smith; Peter J. Southern; Robert Johnson; Ashley T. Haase

In the SIV (simian immunodeficiency virus)-rhesus macaque model of HIV-1 (human immunodeficiency virus type I) transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T-cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T-cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T-cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment, and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses.


Journal of Immunology | 2014

NK cell responses to simian immunodeficiency virus vaginal exposure in naive and vaccinated rhesus macaques.

Liang Shang; Anthony J. Smith; Lijie Duan; Katherine E. Perkey; Lucy Qu; Stephen W. Wietgrefe; Mary Zupancic; Peter J. Southern; Katherine Masek-Hammerman; R. Keith Reeves; R. Paul Johnson; Ashley T. Haase

NK cell responses to HIV/SIV infection have been well studied in acute and chronic infected patients/monkeys, but little is known about NK cells during viral transmission, particularly in mucosal tissues. In this article, we report a systematic study of NK cell responses to high-dose vaginal exposure to SIVmac251 in the rhesus macaque female reproductive tract (FRT). Small numbers of NK cells were recruited into the FRT mucosa following vaginal inoculation. The influx of mucosal NK cells preceded local virus replication and peaked at 1 wk and, thus, was in an appropriate time frame to control an expanding population of infected cells at the portal of entry. However, NK cells were greatly outnumbered by recruited target cells that fuel local virus expansion and were spatially dissociated from SIV RNA+ cells at the major site of expansion of infected founder populations in the transition zone and adjoining endocervix. The number of NK cells in the FRT mucosa decreased rapidly in the second week, while the number of SIV RNA+ cells in the FRT reached its peak. Mucosal NK cells produced IFN-γ and MIP-1α/CCL3 but lacked several markers of activation and cytotoxicity, and this was correlated with inoculum-induced upregulation of the inhibitory ligand HLA-E and downregulation of the activating receptor CD122/IL-2Rβ. Examination of SIVΔnef-vaccinated monkeys suggested that recruitment of NK cells to the genital mucosa was not involved in vaccine-induced protection from vaginal challenge. In summary, our results suggest that NK cells play, at most, a limited role in defenses in the FRT against vaginal challenge.


Mucosal Immunology | 2017

Vaccine-modified NF-kB and GR signaling in cervicovaginal epithelium correlates with protection

Liang Shang; Anthony J. Smith; Cavan Reilly; Lijie Duan; Katherine E. Perkey; Stephen W. Wietgrefe; Mary Zupancic; Peter J. Southern; R P Johnson; John V. Carlis; Ashley T. Haase

Cervicovaginal epithelium plays a critical role in determining the outcome of virus transmission in the female reproductive tract (FRT) by initiating or suppressing transmission-facilitating mucosal immune responses in naïve and SIVmac239Δnef-vaccinated animals, respectively. In this study, we examined the very early responses of cervical epithelium within 24 h after vaginal exposure to SIV in naive and SIVmac239Δnef-vaccinated rhesus macaques. Using both ex vivo and in vivo experimental systems, we found that vaginal exposure to SIV rapidly induces a broad spectrum of pro-inflammatory responses in the epithelium associated with a reciprocal regulation of NF-kB and glucocorticoid receptor (GR) signaling pathways. Conversely, maintenance of high-level GR expression and suppression of NF-kB expression in the epithelium were associated with an immunologically quiescent state in the FRT mucosa and protection against vaginal challenge in SIVmac239Δnef-vaccinated animals. We show that the immunologically quiescent state is induced by FCGR2B-immune complexes interactions that modify the reciprocal regulation of NF-kB and GR signaling pathways. Our results suggest that targeting the balance of NF-kB and GR signaling in early cervicovaginal epithelium responses could moderate mucosal inflammation and target cell availability after vaginal infection, thereby providing a complementary approach to current prevention strategies.


Journal of Immunology | 2014

Live simian immunodeficiency virus vaccine correlate of protection

Anthony J. Smith; Stephen W. Wietgrefe; Liang Shang; Cavan Reilly; Peter J. Southern; Katherine E. Perkey; Lijie Duan; Heinz Kohler; Sybille Müller; James E. Robinson; John V. Carlis; Qingsheng Li; R. Paul Johnson; Ashley T. Haase

Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicenter in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer Ab production and neonatal FcR-mediated concentration of these Abs on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. In this study, we identify blocking CD4+ T cell recruitment to thereby inhibit local expansion of infected founder populations as a second correlate of protection. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex–FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine.


Journal of Immunology | 2014

Live SIV vaccine correlate of protection: immune complex-inhibitory Fc receptor interactions that reduce target cellavailability

Anthony Smith; Stephen W. Wietgrefe; Liang Shang; Cavan Reilly; Peter J. Southern; Katherine E. Perkey; Lijie Duan; Heinz Kohler; Sybille Müller; James Robinson; John V. Carlis; Qingsheng Li; R. Paul Johnson; Ashley T. Haase

Principles to guide design of an effective vaccine against HIV are greatly needed, particularly to protect women in the pandemic’s epicenter in Africa. We have been seeking these principles by identifying correlates of the robust protection associated with SIVmac239Δnef vaccination in the SIV-rhesus macaque animal model of HIV-1 transmission to women. We identified one correlate of SIVmac239Δnef protection against vaginal challenge as a resident mucosal system for SIV-gp41 trimer Ab production and neonatal FcR-mediated concentration of these Abs on the path of virus entry to inhibit establishment of infected founder populations at the portal of entry. In this study, we identify blocking CD4+ T cell recruitment to thereby inhibit local expansion of infected founder populations as a second correlate of protection. Virus-specific immune complex interactions with the inhibitory FcγRIIb receptor in the epithelium lining the cervix initiate expression of genes that block recruitment of target cells to fuel local expansion. Immune complex–FcγRIIb receptor interactions at mucosal frontlines to dampen the innate immune response to vaginal challenge could be a potentially general mechanism for the mucosal immune system to sense and modulate the response to a previously encountered pathogen. Designing vaccines to provide protection without eliciting these transmission-promoting innate responses could contribute to developing an effective HIV-1 vaccine.

Collaboration


Dive into the Katherine E. Perkey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cavan Reilly

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Liang Shang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijie Duan

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge