Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine E. Williams is active.

Publication


Featured researches published by Katherine E. Williams.


Molecular & Cellular Proteomics | 2002

Histone Acetylation and Deacetylation Identification of Acetylation and Methylation Sites of HeLa Histone H4 by Mass Spectrometry

Kangling Zhang; Katherine E. Williams; Lan Huang; Peter M. Yau; Joseph S. Siino; E. Morton Bradbury; Patrick Jones; Michael J. Minch; Alma L. Burlingame

The acetylation isoforms of histone H4 from butyrate-treated HeLa cells were separated by C4 reverse-phase high pressure liquid chromatography and by polyacrylamide gel electrophoresis. Histone H4 bands were excised and digested in-gel with the endoprotease trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to characterize the level of acetylation, and nanoelectrospray tandem mass spectrometric analysis of the acetylated peptides was used to determine the exact sites of acetylation. Although there are 15 acetylation sites possible, only four acetylated peptide sequences were actually observed. The tetra-acetylated form is modified at lysines 5, 8, 12, and 16, the tri-acetylated form is modified at lysines 8, 12, and 16, and the di-acetylated form is modified at lysines 12 and 16. The only significant amount of the mono-acetylated form was found at position 16. These results are consistent with the hypothesis of a “zip” model whereby acetylation of histone H4 proceeds in the direction of from Lys-16 to Lys-5, and deacetylation proceeds in the reverse direction. Histone acetylation and deacetylation are coordinated processes leading to a non-random distribution of isoforms. Our results also revealed that lysine 20 is di-methylated in all modified isoforms, as well as the non-acetylated isoform of H4.


Journal of Mass Spectrometry | 2009

Low molecular weight proteins in urines from healthy subjects as well as diabetic, nephropathic and diabetic-nephropathic patients : a MALDI study

Annunziata Lapolla; Roberta Seraglia; Laura Molin; Katherine E. Williams; Chiara Cosma; R. Reitano; Annalisa Sechi; Eugenio Ragazzi; Pietro Traldi

Urine samples from healthy subjects as well as diabetic, nephropathic and diabetic-nephropathic patients were analyzed by matrix assisted laser desorption/ionization (MALDI) mass spectrometry in order to establish evidence of some possible differences in the peptide profile related to the pathological states. Multivariate analysis suggested the possibility of a distinction among the considered groups of patients. Some differences have been found, in particular, in the relative abundances of three ions at m/z 1912, 1219 and 2049. For these reasons, further investigation was carried out by MALDI/TOF/TOF to determine the sequence of these peptides and, consequently, to individuate their possible origin. By this approach, the peptide at m/z 1912 was found to originate from uromodulin, and its lower expression in the case of nephropathy can be well related to the pathological condition. Ions at m/z 2049 and 1219 originate from the collagen alpha-1(I) chain precursor and from the collagen alpha-5 (IV) chain precursor, respectively, and, also in this case, their different expressions can be related to the pathologies under investigation. The obtained data seem to indicate that urine is an interesting biological fluid to investigate on the peptide profile and to obtain, consequently, information on the dismetabolism activated by specific pathologies.


Applied and Environmental Microbiology | 2009

Web-Based Software for Rapid Top-Down Proteomic Identification of Protein Biomarkers, with Implications for Bacterial Identification

Clifton K. Fagerquist; Brandon R. Garbus; Katherine E. Williams; Anna H. Bates; Síobhán Boyle; Leslie A. Harden

ABSTRACT We have developed web-based software for the rapid identification of protein biomarkers of bacterial microorganisms. Proteins from bacterial cell lysates were ionized by matrix-assisted laser desorption ionization (MALDI), mass isolated, and fragmented using a tandem time of flight (TOF-TOF) mass spectrometer. The sequence-specific fragment ions generated were compared to a database of in silico fragment ions derived from bacterial protein sequences whose molecular weights are the same as the nominal molecular weights of the protein biomarkers. A simple peak-matching and scoring algorithm was developed to compare tandem mass spectrometry (MS-MS) fragment ions to in silico fragment ions. In addition, a probability-based significance-testing algorithm (P value), developed previously by other researchers, was incorporated into the software for the purpose of comparison. The speed and accuracy of the software were tested by identification of 10 protein biomarkers from three Campylobacter strains that had been identified previously by bottom-up proteomics techniques. Protein biomarkers were identified using (i) their peak-matching scores and/or P values from a comparison of MS-MS fragment ions with all possible in silico N and C terminus fragment ions (i.e., ions a, b, b-18, y, y-17, and y-18), (ii) their peak-matching scores and/or P values from a comparison of MS-MS fragment ions to residue-specific in silico fragment ions (i.e., in silico fragment ions resulting from polypeptide backbone fragmentation adjacent to specific residues [aspartic acid, glutamic acid, proline, etc.]), and (iii) fragment ion error analysis, which distinguished the systematic fragment ion error of a correct identification (caused by calibration drift of the second TOF mass analyzer) from the random fragment ion error of an incorrect identification.


Journal of Proteome Research | 2012

Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers.

Penelope M. Drake; Birgit Schilling; Richard K. Niles; Akraporn Prakobphol; Bensheng Li; Kwanyoung Jung; Wonryeon Cho; Miles Braten; Halina D. Inerowicz; Katherine E. Williams; Matthew E. Albertolle; Jason M. Held; Demetris C. Iacovides; Dylan J. Sorensen; Obi L. Griffith; Eric B. Johansen; Anna M. Zawadzka; Michael P. Cusack; Simon Allen; Matthew Gormley; Steven C. Hall; H. Ewa Witkowska; Joe W. Gray; Fred E. Regnier; Bradford W. Gibson; Susan J. Fisher

We used a lectin chromatography/MS-based approach to screen conditioned medium from a panel of luminal (less aggressive) and triple negative (more aggressive) breast cancer cell lines (n=5/subtype). The samples were fractionated using the lectins Aleuria aurantia (AAL) and Sambucus nigra agglutinin (SNA), which recognize fucose and sialic acid, respectively. The bound fractions were enzymatically N-deglycosylated and analyzed by LC-MS/MS. In total, we identified 533 glycoproteins, ∼90% of which were components of the cell surface or extracellular matrix. We observed 1011 glycosites, 100 of which were solely detected in ≥3 triple negative lines. Statistical analyses suggested that a number of these glycosites were triple negative-specific and thus potential biomarkers for this tumor subtype. An analysis of RNaseq data revealed that approximately half of the mRNAs encoding the protein scaffolds that carried potential biomarker glycosites were up-regulated in triple negative vs luminal cell lines, and that a number of genes encoding fucosyl- or sialyltransferases were differentially expressed between the two subtypes, suggesting that alterations in glycosylation may also drive candidate identification. Notably, the glycoproteins from which these putative biomarker candidates were derived are involved in cancer-related processes. Thus, they may represent novel therapeutic targets for this aggressive tumor subtype.


Clinical Proteomics | 2015

Proteomic analysis of human follicular fluid from fertile women

Alberuni M Zamah; Maria E. Hassis; Matthew E. Albertolle; Katherine E. Williams

BackgroundFollicular fluid is a unique biological fluid in which the critical events of oocyte and follicular maturation and somatic cell-germ cell communication occur. Because of the intimate proximity of follicular fluid to the maturing oocyte, this fluid provides a unique window into the processes occurring during follicular maturation. A thorough identification of the specific components within follicular fluid may provide a better understanding of intrafollicular signaling, as well as reveal potential biomarkers of oocyte health for women undergoing assisted reproductive treatment. In this study, we used high and low pH HPLC peptide separations followed by mass spectrometry to perform a comprehensive proteomic analysis of human follicular fluid from healthy ovum donors. Next, using samples from a second set of patients, an isobaric mass tagging strategy for quantitative analysis was used to identify proteins with altered abundances after hCG treatment.ResultsA total of 742 follicular fluid proteins were identified in healthy ovum donors, including 413 that have not been previously reported. The proteins belong to diverse functional groups including insulin growth factor and insulin growth factor binding protein families, growth factor and related proteins, receptor signaling, defense/immunity, anti-apoptotic proteins, matrix metalloprotease related proteins, and complement activity. In a quantitative analysis, follicular fluid samples from age-matched women undergoing in vitro fertilization oocyte retrieval were compared and 17 follicular fluid proteins were found at significantly altered levels (p < 0.05) between pre-hCG and post-hCG samples. These proteins belong to a variety of functional processes, including protease inhibition, inflammation, and cell adhesion.ConclusionsThis database of FF proteins significantly extends the known protein components present during the peri-ovulatory period and provides a useful basis for future studies comparing follicular fluid proteomes in various fertility, disease, and environmental exposure conditions. We identified 17 differentially expressed proteins after hCG treatment and together these data showed the feasibility for defining biomarkers that illuminate how the ovarian follicle microenvironment is altered in various infertility-related conditions.


Molecular & Cellular Proteomics | 2005

Proteome Changes in Ovarian Epithelial Cells Derived from Women with BRCA1 Mutations and Family Histories of Cancer

Diana M. Smith-Beckerman; Kit W. Fung; Katherine E. Williams; Nelly Auersperg; Andrew K. Godwin; Alma L. Burlingame

Malignant transformation of the ovarian surface epithelium (OSE) accounts for most ovarian carcinoma. Detection of preneoplastic changes in the OSE leading to overt malignancy is important in prevention and management of ovarian cancer. We identified OSE proteins with altered expression derived from women with a family history (FH) of ovarian and/or breast cancer and mutations in the BRCA1 tumor suppressor gene. Proteins from SV-40-transformed FH-OSE cell lines and control OSE lines derived from women without such histories (non-family history) were separated by two-dimensional PAGE. Gels were analyzed, a protein data base was created, and proteins were characterized according to their molecular weight, isoelectric point, and relative abundance. Mass spectrometry was performed on tryptic protein digests, and data bases were searched for known proteins with the same theoretical tryptic peptide masses. Several proteins showed altered expression in the FH-OSE cells. β-Tubulin and to a lesser extent ubiquitin carboxyl-terminal hydrolase and glyoxalase 1 appeared to be up-regulated. In contrast, proteins suppressed in FH lines include the 27-kDa heat shock protein, translationally controlled tumor protein, and several proteins associated with actin modification such as actin prepeptide, F-actin capping protein α subunit, and cofilin. Sequencing of several cofilin gel spots revealed phosphorylation of serine 3, a post-translational modification associated with decreased actin binding and cytoskeletal reorganization. Two-dimensional Western blots probed with cofilin antibody showed multiple protein spots with isoelectric points of 6–9 pH units. Blots of one-dimensional gels showed a significant reduction in cofilin expression in three FH lines when compared with three non-family history lines (p ≤ 0.05). Identification of these and other OSE proteins may be useful in detecting changes suggestive of increased risk of developing preneoplastic disease and defining the possible role(s) of the BRCA1 gene in regulation of OSE cell function.


Molecular & Cellular Proteomics | 2002

Attomole Detection of in Vivo Protein Targets of Benzene in Mice Evidence For A Highly Reactive Metabolite

Katherine E. Williams; Tonya A. Carver; Jj L. Miranda; Antti Kautiainen; John S. Vogel; Karen Dingley; Michael A. Baldwin; Kenneth W. Turteltaub; Alma L. Burlingame

Modified proteins were detected in liver and bone marrow of mice following treatment with [14C]benzene. Stained sections were excised from one-dimensional and two-dimensional gels and converted to graphite to enable 14C/13C ratios to be measured by accelerator mass spectrometry. Protein adducts of benzene or its metabolites were indicated by elevated levels of 14C. A number of proteins were identified by in-gel proteolysis and conventional mass spectrometric methods with the low molecular weight proteins identified including hemoglobin and several histones. The incorporation of 14C was largely proportional to the density of gel staining, giving little evidence that these proteins were specific targets for selective labeling. This was also true for individual histones subfractionated with Triton-acid-urea gels. A representative histone, H4, was isolated and digested with endopeptidase Asp-N, and the resulting peptides were separated by high performance liquid chromatography. 14C levels in collected fractions were determined, and the peptides were identified by conventional mass spectrometry. The modifications were distributed throughout the protein, and no particular amino acids or groups of amino acids were identified as selective targets. Thus chemical attack by one or more benzene metabolites upon histones was identified and confirmed, but the resulting modifications appeared to be largely nonspecific. This implies high reactivity toward proteins, enabling such attack to occur at multiple sites within multiple targets. It is not known to what extent, if any, the modification of the core histones may contribute to the carcinogenicity of benzene.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Protein composition of bronchoalveolar lavage fluid and airway surface liquid from newborn pigs

Jennifer A. Bartlett; Matthew E. Albertolle; Christine L. Wohlford-Lenane; Alejandro A. Pezzulo; Joseph Zabner; Richard K. Niles; Susan J. Fisher; Paul B. McCray; Katherine E. Williams

The airway mucosa and the alveolar surface form dynamic interfaces between the lung and the external environment. The epithelial cells lining these barriers elaborate a thin liquid layer containing secreted peptides and proteins that contribute to host defense and other functions. The goal of this study was to develop and apply methods to define the proteome of porcine lung lining liquid, in part, by leveraging the wealth of information in the Sus scrofa database of Ensembl gene, transcript, and protein model predictions. We developed an optimized workflow for detection of secreted proteins in porcine bronchoalveolar lavage (BAL) fluid and in methacholine-induced tracheal secretions [airway surface liquid (ASL)]. We detected 674 and 3,858 unique porcine-specific proteins in BAL and ASL, respectively. This proteome was composed of proteins representing a diverse range of molecular classes and biological processes, including host defense, molecular transport, cell communication, cytoskeletal, and metabolic functions. Specifically, we detected a significant number of secreted proteins with known or predicted roles in innate and adaptive immunity, microbial killing, or other aspects of host defense. In greatly expanding the known proteome of the lung lining fluid in the pig, this study provides a valuable resource for future studies using this important animal model of pulmonary physiology and disease.


Journal of the American Society for Mass Spectrometry | 2010

Covalent attachment and dissociative loss of sinapinic acid to/from cysteine-containing proteins from bacterial cell lysates analyzed by MALDI-TOF-TOF mass spectrometry.

Clifton K. Fagerquist; Brandon R. Garbus; Katherine E. Williams; Anna H. Bates; Leslie A. Harden

We report covalent attachment via a thiol ester linkage of 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid or SA) to cysteine-containing protein biomarkers from bacterial cell lysates of E. coli analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry when using SA as the matrix. Evidence to support this conclusion is the appearance of additional peaks in the MS spectra when using SA, which are absent when using α-cyano-4-hydroxycinnamic acid (HCCA). The additional peaks appear at a mass-to-charge (m/z) ∼208 greater to the m/z of a more abundant protein ion peak. Protein biomarkers were identified by tandem mass spectrometry (MS/MS) using a MALDI time-of-flight/time-of-flight (TOF-TOF) mass spectrometer and top-down proteomics. Three protein biomarkers, HdeA, HdeB, and homeobox or YbgS (each containing two cysteine residues) were identified as having reactivity to SA. Non-cysteine-containing protein biomarkers showed no evidence of reactivity to SA. MS ions and MS/MS fragment ions were consistent with covalent attachment of SA via a thiol ester linkage to the side-chain of cysteine residues. MS/MS of a protein biomarker ion with a covalently attached SA revealed fragment ion peaks suggesting dissociative loss SA. We propose dissociative loss of SA is facilitated by a pentacyclic transition-state followed by proton abstraction of the β-hydrogen of the bound SA by a sulfur lone pair followed by dissociative loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal. The apparent reactivity of SA to cysteine/disulfide-containing proteins may complicate identification of such proteins, however the apparent differential reactivity of SA and HCCA toward cysteine/disulfide-containing proteins may be exploited for identification of unknown cysteine-containing proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Quantitative proteomic analyses of mammary organoids reveals distinct signatures after exposure to environmental chemicals

Katherine E. Williams; George A. Lemieux; Maria E. Hassis; Adam B. Olshen; Susan J. Fisher; Zena Werb

Significance We demonstrate that exposure to three environmental chemicals suggested to affect breast development—bisphenol A, mono-n-butyl phthalate, and polychlorinated biphenyl 153—at physiologically relevant doses results in unique responses and alterations in the proteome. This study provides insights into how the mammary epithelium changes in response to physiologically relevant exposures to xenobiotic chemicals. These changes could be correlated with increased risk of transformation or important changes in function. Common environmental contaminants such as bisphenols and phthalates and persistent contaminants such as polychlorinated biphenyls are thought to influence tissue homeostasis and carcinogenesis by acting as disrupters of endocrine function. In this study we investigated the direct effects of exposure to bisphenol A (BPA), mono-n-butyl phthalate (Pht), and polychlorinated biphenyl 153 (PCB153) on the proteome of primary organotypic cultures of the mouse mammary gland. At low-nanomolar doses each of these agents induced distinct effects on the proteomes of these cultures. Although BPA treatment produced effects that were similar to those induced by estradiol, there were some notable differences, including a reduction in the abundance of retinoblastoma-associated protein and increases in the Rho GTPases Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle protein CDC42. Both Pht and PCB153 induced changes that were distinct from those induced by estrogen, including decreased levels of the transcriptional corepressor C-terminal binding protein 1. Interestingly, the three chemicals appeared to alter the abundance of distinct splice forms of many proteins as well as the abundance of several proteins that regulate RNA splicing. Our combined results indicate that the three classes of chemical have distinct effects on the proteome of normal mouse mammary cultures, some estrogen-like but most estrogen independent, that influence diverse biological processes including apoptosis, cell adhesion, and proliferation.

Collaboration


Dive into the Katherine E. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven C. Hall

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna H. Bates

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Brandon R. Garbus

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge