Katherine Handel
Canadian Food Inspection Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katherine Handel.
Scientific Reports | 2015
John Pasick; Yohannes Berhane; Tomy Joseph; Victoria Bowes; Tamiko Hisanaga; Katherine Handel; Soren Alexandersen
In late November 2014 higher than normal death losses in a meat turkey and chicken broiler breeder farm in the Fraser Valley of British Columbia initiated a diagnostic investigation that led to the discovery of a novel reassortant highly pathogenic avian influenza (HPAI) H5N2 virus. This virus, composed of 5 gene segments (PB2, PA, HA, M and NS) related to Eurasian HPAI H5N8 and the remaining gene segments (PB1, NP and NA) related to North American lineage waterfowl viruses, represents the first HPAI outbreak in North American poultry due to a virus with Eurasian lineage genes. Since its first appearance in Korea in January 2014, HPAI H5N8 spread to Western Europe in November 2014. These European outbreaks happened to temporally coincide with migratory waterfowl movements. The fact that the British Columbia outbreaks also occurred at a time associated with increased migratory waterfowl activity along with reports by the USA of a wholly Eurasian H5N8 virus detected in wild birds in Washington State, strongly suggest that migratory waterfowl were responsible for bringing Eurasian H5N8 to North America where it subsequently reassorted with indigenous viruses.
Transboundary and Emerging Diseases | 2014
John Pasick; Yohannes Berhane; Davor Ojkic; G. Maxie; Carissa Embury-Hyatt; K. Swekla; Katherine Handel; Jim Fairles; Soren Alexandersen
Summary In January 2014, approximately 9 months following the initial detection of porcine epidemic diarrhea (PED) in the USA, the first case of PED was confirmed in a swine herd in south‐western Ontario. A follow‐up epidemiological investigation carried out on the initial and 10 subsequent Ontario PED cases pointed to feed as a common risk factor. As a result, several lots of feed and spray‐dried porcine plasma (SDPP) used as a feed supplement were tested for the presence of PEDV genome by real‐time RT‐PCR assay. Several of these tested positive, supporting the notion that contaminated feed may have been responsible for the introduction of PEDV into Canada. These findings led us to conduct a bioassay experiment in which three PEDV‐positive SDPP samples (from a single lot) and two PEDV‐positive feed samples supplemented with this SDPP were used to orally inoculate 3‐week‐old piglets. Although the feed‐inoculated piglets did not show any significant excretion of PEDV, the SDPP‐inoculated piglets shed PEDV at a relatively high level for ≥9 days. Despite the fact that the tested PEDV genome positive feed did not result in obvious piglet infection in our bioassay experiment, contaminated feed cannot be ruled out as a likely source of this introduction in the field where many other variables may play a contributing role.
Emerging Infectious Diseases | 2007
John Pasick; Yohannes Berhane; Carissa Embury-Hyatt; John Copps; Helen Kehler; Katherine Handel; Shawn Babiuk; Kathleen Hooper-McGrevy; Yan Li; Quynh Mai Le; Song Lien Phuong
Prior exposure of Canada geese to a North American low pathogenic virus (H5N2) decreases their susceptibility to Eurasian highly pathogenic avian influenza virus (H5N1).
Journal of Virology | 2007
Erica Spackman; David E. Swayne; David L. Suarez; Dennis A. Senne; Janice C. Pedersen; Mary Lea Killian; John Pasick; Katherine Handel; Smitha P. Somanathan Pillai; Chang-Won Lee; David E. Stallknecht; Richard D. Slemons; Hon S. Ip; Tom Deliberto
ABSTRACT Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.
Emerging Infectious Diseases | 2009
Yohannes Berhane; Tamiko Hisanaga; Helen Kehler; James Neufeld; Lisa Manning; Connie Argue; Katherine Handel; Kathleen Hooper-McGrevy; Marilyn Jonas; John A. Robinson; Robert G. Webster; John Pasick
Epidemiologic, serologic, and molecular phylogenetic methods were used to investigate an outbreak of highly pathogenic avian influenza on a broiler breeding farm in Saskatchewan, Canada. Results, coupled with data from influenza A virus surveillance of migratory waterfowl in Canada, implicated wild birds as the most probable source of the low pathogenicity precursor virus.
Avian Diseases | 2010
Yohannes Berhane; Davor Ojkic; James Neufeld; Marsha Leith; Tamiko Hisanaga; Helen Kehler; Arpad Ferencz; Helen Wojcinski; Colleen Cottam-Birt; Matthew Suderman; Katherine Handel; Soren Alexandersen; John Pasick
Abstract Suspected human-to-animal transmission of the 2009 pandemic H1N1 (pH1N1) virus has been reported in several animal species, including pigs, dogs, cats, ferrets, and turkeys. In this study we describe the genetic characterization of pH1N1 viruses isolated from breeder turkeys that was associated with a progressive drop in egg production. Sequence analysis of all eight gene segments from three viruses isolated from this outbreak demonstrated homology with other human and swine pH1N1 isolates. The susceptibility of turkeys to a human pH1N1 isolate was further evaluated experimentally. The 50% turkey infectious dose (TID50) for the human isolate A/Mexico/InDRE/4487/2009 was determined by inoculating groups of 8–10-week-old turkeys with serial 10-fold dilutions of virus by oronasal and cloacal routes. We estimated the TID50 to be between 1 × 105 and 1 × 106 TCID50. The pathogenesis of pH1N1 in oronasally or cloacally inoculated juvenile turkeys was also examined. None of the turkeys exhibited clinical signs, and no significant difference in virus shedding or seroconversion was observed between the two inoculation groups. More than 50% of the turkeys in both oronasal and cloacal groups shed virus beginning at 2 days postinoculation (dpi). All birds that actively shed virus seroconverted by 14 dpi. Virus antigen was demonstrated by immunohistochemistry in the cecal tonsils and bursa of Fabricius in two of the birds that were infected by the cloacal route. Virus transmission to naive contact turkeys was at best doubtful. This report provides additional evidence that pH1N1 can cross the species barrier and cause disease outbreaks in domestic turkeys. However, it appears that the reproductive status of the host as well as environmental factors such as concurrent infections, stress, the presence or absence of litter, and stocking density may also contribute to efficient infection and transmission of this agent.
Journal of Virology | 2011
Charles Nfon; Yohannes Berhane; Tamiko Hisanaga; Shunzhen Zhang; Katherine Handel; Helen Kehler; Olivia Labrecque; Nicola S. Lewis; Amy L. Vincent; John Copps; Soren Alexandersen; John Pasick
ABSTRACT The 2009 pandemic H1N1 (pH1N1), of apparent swine origin, may have evolved in pigs unnoticed because of insufficient surveillance. Consequently, the need for surveillance of influenza viruses circulating in pigs has received added attention. In this study we characterized H1N1 viruses isolated from Canadian pigs in 2009. Isolates from May 2009 were comprised of hemagglutinin and neuraminidase (NA) genes of classical SIV origin in combination with the North American triple-reassortant internal gene (TRIG) cassette, here termed contemporary SIV (conSIV) H1N1. These conSIV H1N1 viruses were contiguous with the North American αH1 cluster, which was distinct from the pH1N1 isolates that were antigenically more related to the γH1 cluster. After the initial isolation of pH1N1 from an Alberta pig farm in early May 2009, pH1N1 was found several times in Canadian pigs. These pH1N1 isolates were genetically and antigenically homogeneous. In addition, H1N1 viruses bearing seasonal human H1 and N1 genes together with the TRIG cassette and an NA encoding an oseltamivir-resistance marker were isolated from pigs. The NS gene of one of these seasonal human-like SIV (shSIV) H1N1 isolates was homologous to pH1N1 NS, implicating reassortment between the two strains. Antigenic cross-reactivity was observed between pH1N1 and conSIV but not with shSIV H1N1. In summary, although there was cocirculation of pH1N1 with conSIV and shSIV H1N1 in Canadian pigs after May 2009, there was no evidence supporting the presence of pH1N1 in pigs prior to May 2009. The possibility for further reassortants being generated exists and should be closely monitored.
Transboundary and Emerging Diseases | 2011
Charles Nfon; Yohannes Berhane; S. Zhang; Katherine Handel; O. Labrecque; John Pasick
In 2005, triple-reassortant H3N2 (trH3N2) influenza A viruses were isolated from swine and turkeys in Canada. Subsequently, these viruses were isolated from humans and mink in 2006 and 2007, respectively. Following full genome sequencing, H3N2 viruses isolated from turkeys (2005), quail (2008) and swine (2009) in Canada, were characterized as trH3N2. The 2005 turkey isolate was found to be almost identical to other viruses isolated in that year, with quail and pig isolates related very closely to the 2005 trH3N2. Minimal antigenic evolution of the swine isolates relative to the reference 2005 virus was observed. These results suggest the establishment of a stable lineage of trH3N2 in Canadian pigs, with evidence for interspecies transmission to turkeys and quails.
Avian Diseases | 2010
John Pasick; Yohannes Berhane; Tamiko Hisanaga; Helen Kehler; Kathleen Hooper-McGrevy; Katherine Handel; James Neufeld; C. Argue; Frederick A. Leighton
Abstract In September 2007, an H7N3 highly pathogenic avian influenza outbreak (HPAI) occurred on a multiple-age broiler breeder operation near Regina Beach, Saskatchewan, Canada. Mortality was initially observed in a barn that housed 24-wk-old roosters, with later involvement of 32-wk-old breeders. All birds on the affected premises were destroyed, and surveillance of surrounding farms demonstrated no further spread. The use of water from a dugout pond during periods of high demand, and the proximity of the farm to Last Mountain Lake, the northern end of which is a bird sanctuary, implicated wild aquatic birds as a possible source of the virus. Of particular note, the H7-specific real-time reverse transcription polymerase chain reaction assay that was in use at the time did not detect the virus associated with this outbreak. A Canadian national influenza A virus survey of wild aquatic birds detected no H7 subtype viruses in 2005 and 2006; however, H7 subtype viruses were detected in the fall of 2007. Phylogenetic analysis of a number of these H7 isolates demonstrated an evolutionary relationship with each other, as well as with the H7N3 HPAI virus that was isolated from the Saskatchewan broiler breeder farm.
PLOS ONE | 2012
Yohannes Berhane; Helen Kehler; Katherine Handel; Tamiko Hisanaga; Wanhong Xu; Davor Ojkic; John Pasick
Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro.