Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Neufeld is active.

Publication


Featured researches published by James Neufeld.


Journal of Virology | 2004

Immunization with Modified Vaccinia Virus Ankara-Based Recombinant Vaccine against Severe Acute Respiratory Syndrome Is Associated with Enhanced Hepatitis in Ferrets

Hana Weingartl; Markus Czub; Stefanie Czub; James Neufeld; Peter Marszal; Jason Gren; Greg C. Smith; Shane Jones; Roxanne Proulx; Yvonne Deschambault; Elsie Grudeski; Anton Andonov; Runtao He; Yan Li; John Copps; Allen Grolla; Daryl Dick; Jody Berry; Shelley Ganske; Lisa Manning; Jingxin Cao

ABSTRACT Severe acute respiratory syndrome (SARS) caused by a newly identified coronavirus (SARS-CoV) is a serious emerging human infectious disease. In this report, we immunized ferrets (Mustela putorius furo) with recombinant modified vaccinia virus Ankara (rMVA) expressing the SARS-CoV spike (S) protein. Immunized ferrets developed a more rapid and vigorous neutralizing antibody response than control animals after challenge with SARS-CoV; however, they also exhibited strong inflammatory responses in liver tissue. Inflammation in control animals exposed to SARS-CoV was relatively mild. Thus, our data suggest that vaccination with rMVA expressing SARS-CoV S protein is associated with enhanced hepatitis.


Journal of Virology | 2010

Genetic and Pathobiologic Characterization of Pandemic H1N1 2009 Influenza Viruses from a Naturally Infected Swine Herd

Hana Weingartl; Yohannes Berhane; Tamiko Hisanaga; James Neufeld; Helen Kehler; Carissa Emburry-Hyatt; Kathleen Hooper-McGreevy; Samantha Kasloff; Brett Dalman; Jan Bystrom; Soren Alexandersen; Yan Li; John Pasick

ABSTRACT Since its initial identification in Mexico and the United States, concerns have been raised that the novel H1N1 influenza virus might cause a pandemic of severity comparable to that of the 1918 pandemic. In late April 2009, viruses phylogenetically related to pandemic H1N1 influenza virus were isolated from an outbreak on a Canadian pig farm. This outbreak also had epidemiological links to a suspected human case. Experimental infections carried out in pigs using one of the swine isolates from this outbreak and the human isolate A/Mexico/InDRE4487/2009 showed differences in virus recovery from the lower respiratory tract. Virus was consistently isolated from the lungs of pigs infected with A/Mexico/InDRE4487/2009, while only one pig infected with A/swine/Alberta/OTH-33-8/2008 yielded live virus from the lung, despite comparable amounts of viral RNA and antigen in both groups of pigs. Clinical disease resembled other influenza virus infections in swine, albeit with somewhat prolonged virus antigen detection and delayed viral-RNA clearance from the lungs. There was also a noteworthy amount of genotypic variability among the viruses isolated from the pigs on the farm. This, along with the somewhat irregular pathobiological characteristics observed in experimentally infected animals, suggests that although the virus may be of swine origin, significant viral evolution may still be ongoing.


The Journal of Infectious Diseases | 2011

Replication, Pathogenicity, Shedding, and Transmission of Zaire ebolavirus in Pigs

Gary P. Kobinger; Anders Leung; James Neufeld; Jason S. Richardson; Darryl Falzarano; Greg Smith; Kevin Tierney; Ami Patel; Hana Weingartl

UNLABELLED (See the editorial commentary by Bausch, on pages 179-81.) BACKGROUND Reston ebolavirus was recently detected in pigs in the Philippines. Specific antibodies were found in pig farmers, indicating exposure to the virus. This important observation raises the possibility that pigs may be susceptible to Ebola virus infection, including from other species, such as Zaire ebolavirus (ZEBOV), and can transmit to other susceptible hosts. METHODS This study investigated whether ZEBOV, a species commonly reemerging in central Africa, can replicate and induce disease in pigs and can be transmitted to naive animals. Domesticated Landrace pigs were challenged through mucosal exposure with a total of 1 ×10(6) plaque-forming units of ZEBOV and monitored for virus replication, shedding, and pathogenesis. Using similar conditions, virus transmission from infected to naive animals was evaluated in a second set of pigs. RESULTS Following mucosal exposure, pigs replicated ZEBOV to high titers (reaching 10(7) median tissue culture infective doses/mL), mainly in the respiratory tract, and developed severe lung pathology. Shedding from the oronasal mucosa was detected for up to 14 days after infection, and transmission was confirmed in all naive pigs cohabiting with inoculated animals. CONCLUSIONS These results shed light on the susceptibility of pigs to ZEBOV infection and identify an unexpected site of virus amplification and shedding linked to transmission of infectious virus.


Transboundary and Emerging Diseases | 2008

Quantification of Lumpy Skin Disease Virus Following Experimental Infection in Cattle

Shawn Babiuk; Timothy R. Bowden; G. Parkyn; B. Dalman; L. Manning; James Neufeld; Carissa Embury-Hyatt; John Copps; David B. Boyle

Lumpy skin disease along with sheep pox and goatpox are the most serious poxvirus diseases of livestock, and are caused by viruses that belong to the genus Capripoxvirus within the subfamily Chordopoxvirinae, family Poxviridae. To facilitate the study of lumpy skin disease pathogenesis, we inoculated eight 4- to 6-month-old Holstein calves intravenously with lumpy skin disease virus (LSDV) and collected samples over a period of 42 days for analysis by virus isolation, real-time PCR and light microscopy. Following inoculation, cattle developed fever and skin nodules, with the extent of infection varying between animals. Skin nodules remained visible until the end of the experiment on day post-inoculation (DPI) 42. Viremia measured by real-time PCR and virus isolation was not observed in all animals but was detectable between 6 and 15 DPI. Low levels of viral shedding were observed in oral and nasal secretions between 12 and 18 DPI. Several tissues were assessed for the presence of virus at DPI 3, 6, 9, 12, 15, 18 and 42 by virus isolation and real-time PCR. Virus was consistently detected by real-time PCR and virus isolation at high levels in skin nodules indicating LSDV has a tropism for skin. In contrast, relatively few lesions were observed systemically. Viral DNA was detected by real-time PCR in skin lesions collected on DPI 42. Cattle developing anti-capripoxvirus antibodies starting at DPI 21 was detected by serum neutralization. The disease in this study varied from mild with few secondary skin nodules to generalized infection of varying severity, and was characterized by morbidity with no mortality.


Journal of Virology | 2009

Experimental Infection of Pigs with the Human 1918 Pandemic Influenza Virus

Hana Weingartl; Randy A. Albrecht; Kelly M. Lager; Shawn Babiuk; Peter Marszal; James Neufeld; Carissa Embury-Hyatt; Porntippa Lekcharoensuk; Terrence M. Tumpey; Adolfo García-Sastre; Jürgen A. Richt

ABSTRACT Swine influenza was first recognized as a disease entity during the 1918 “Spanish flu” pandemic. The aim of this work was to determine the virulence of a plasmid-derived human 1918 pandemic H1N1 influenza virus (reconstructed 1918, or 1918/rec, virus) in swine using a plasmid-derived A/swine/Iowa/15/1930 H1N1 virus (1930/rec virus), representing the first isolated influenza virus, as a reference. Four-week-old piglets were inoculated intratracheally with either the 1930/rec or the 1918/rec virus or intranasally with the 1918/rec virus. A transient increase in temperature and mild respiratory signs developed postinoculation in all virus-inoculated groups. In contrast to other mammalian hosts (mice, ferrets, and macaques) where infection with the 1918/rec virus was lethal, the pigs did not develop severe respiratory distress or become moribund. Virus titers in the lower respiratory tract as well as macro- and microscopic lesions at 3 and 5 days postinfection (dpi) were comparable between the 1930/rec and 1918/rec virus-inoculated animals. In contrast to the 1930/rec virus-infected animals, at 7 dpi prominent lung lesions were present in only the 1918/rec virus-infected animals, and all the piglets developed antibodies at 7 dpi. Presented data support the hypothesis that the 1918 pandemic influenza virus was able to infect and replicate in swine, causing a respiratory disease, and that the virus was likely introduced into the pig population during the 1918 pandemic, resulting in the current lineage of the classical H1N1 swine influenza viruses.


The Journal of Infectious Diseases | 2010

Assessment of the Efficacy of Commercially Available and Candidate Vaccines against a Pandemic H1N1 2009 Virus

Gary P. Kobinger; Isabelle Meunier; Ami Patel; Stéphane Pillet; Jason Gren; Shane Stebner; Anders Leung; James Neufeld; Darwyn Kobasa; Veronika von Messling

Abstract Background. The emergence and global spread of the pandemic H1N1 2009 influenza virus have raised questions regarding the protective effect of available seasonal vaccines and the efficacy of a newly produced matched vaccine. Methods. Ferrets were immunized with the 2008–2009 formulations of commercially available live attenuated (FluMist; MedImmune) or split-inactivated (Fluviral; GlaxoSmithKline) vaccines, a commercial swine vaccine (FluSure; Pfizer), or a laboratory-produced matched inactivated whole-virus vaccine (A/Mexico/InDRE4487/2009). Adaptive immune responses were monitored, and the animals were challenged with A/Mexico/InDRE4487/2009 after 5 weeks. Results. Only animals that received the swine or matched vaccines developed detectable hemagglutination- inhibiting antibodies against the challenge virus, whereas a T cell response was exclusively detected in animals vaccinated with FluMist. After challenge, all animals had high levels of virus replication in the upper respiratory tract. However, preexisting anti—pandemic H1N1 2009 antibodies resulted in reduced clinical signs and improved survival. Surprisingly, FluMist was associated with a slight increase in mortality and greater lung damage, which correlated with early up-regulation of interleukin-10. Conclusions. The present study demonstrates that a single dose of matched inactivated vaccine confers partial protection against a pandemic H1N1 2009 virus, and it suggests that a higher dose or prime-boost regimen may be required. The consequences of mismatched immunity to influenza merit further investigation.


Thrombosis and Haemostasis | 2009

Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro

Andrea Maisner; James Neufeld; Hana Weingartl

Nipah virus (NiV) is a highly pathogenic paramyxovirus that was first isolated in 1999 during an outbreak in Malaysia. In contrast to other paramyxoviruses NiV infects many mammalian species. Because of its zoonotic potential, the high pathogenicity and the lack of therapeutic treatment, NiV was classified as a biosafety level 4 pathogen. In humans NiV causes a severe acute encephalitis whereas in some animal hosts respiratory symptoms are predominantly observed. Despite the differences in the clinical outcome, microvascular endothelial cell damage predominantly underlies the pathological changes in NiV infections in all susceptible host species. NiV generally induces a pronounced vasculitis which is primarily characterised by endothelial cell necrosis and inflammatory cell infiltration. For future developments of specific antiviral therapies or vaccines, a detailed understanding of the molecular basis of NiV pathogenesis is required. This article reviews the current knowledge about natural and experimental infections in different mammals, focusing on the main organ and cell tropism in vivo, and summarises some recent studies in cell culture on the role of ephrin-B2 and -B3 receptors in NiV infection of endothelial cells.


Emerging Infectious Diseases | 2009

Highly pathogenic avian influenza virus A (H7N3) in domestic poultry, Saskatchewan, Canada, 2007.

Yohannes Berhane; Tamiko Hisanaga; Helen Kehler; James Neufeld; Lisa Manning; Connie Argue; Katherine Handel; Kathleen Hooper-McGrevy; Marilyn Jonas; John A. Robinson; Robert G. Webster; John Pasick

Epidemiologic, serologic, and molecular phylogenetic methods were used to investigate an outbreak of highly pathogenic avian influenza on a broiler breeding farm in Saskatchewan, Canada. Results, coupled with data from influenza A virus surveillance of migratory waterfowl in Canada, implicated wild birds as the most probable source of the low pathogenicity precursor virus.


Avian Diseases | 2010

Molecular characterization of pandemic H1N1 influenza viruses isolated from turkeys and pathogenicity of a human pH1N1 isolate in turkeys.

Yohannes Berhane; Davor Ojkic; James Neufeld; Marsha Leith; Tamiko Hisanaga; Helen Kehler; Arpad Ferencz; Helen Wojcinski; Colleen Cottam-Birt; Matthew Suderman; Katherine Handel; Soren Alexandersen; John Pasick

Abstract Suspected human-to-animal transmission of the 2009 pandemic H1N1 (pH1N1) virus has been reported in several animal species, including pigs, dogs, cats, ferrets, and turkeys. In this study we describe the genetic characterization of pH1N1 viruses isolated from breeder turkeys that was associated with a progressive drop in egg production. Sequence analysis of all eight gene segments from three viruses isolated from this outbreak demonstrated homology with other human and swine pH1N1 isolates. The susceptibility of turkeys to a human pH1N1 isolate was further evaluated experimentally. The 50% turkey infectious dose (TID50) for the human isolate A/Mexico/InDRE/4487/2009 was determined by inoculating groups of 8–10-week-old turkeys with serial 10-fold dilutions of virus by oronasal and cloacal routes. We estimated the TID50 to be between 1 × 105 and 1 × 106 TCID50. The pathogenesis of pH1N1 in oronasally or cloacally inoculated juvenile turkeys was also examined. None of the turkeys exhibited clinical signs, and no significant difference in virus shedding or seroconversion was observed between the two inoculation groups. More than 50% of the turkeys in both oronasal and cloacal groups shed virus beginning at 2 days postinoculation (dpi). All birds that actively shed virus seroconverted by 14 dpi. Virus antigen was demonstrated by immunohistochemistry in the cecal tonsils and bursa of Fabricius in two of the birds that were infected by the cloacal route. Virus transmission to naive contact turkeys was at best doubtful. This report provides additional evidence that pH1N1 can cross the species barrier and cause disease outbreaks in domestic turkeys. However, it appears that the reproductive status of the host as well as environmental factors such as concurrent infections, stress, the presence or absence of litter, and stocking density may also contribute to efficient infection and transmission of this agent.


Avian Diseases | 2010

Studying Possible Cross-Protection of Canada Geese Preexposed to North American Low Pathogenicity Avian Influenza Virus Strains (H3N8, H4N6, and H5N2) Against an H5N1 Highly Pathogenic Avian Influenza Challenge

Yohannes Berhane; Marsha Leith; C. Embury-Hyatt; James Neufeld; S. Babiuk; Tamiko Hisanaga; Helen Kehler; Kathleen Hooper-McGrevy; John Pasick

Abstract Highly pathogenic avian influenza (HPAI) H5N1 virus infections have caused unprecedented morbidity and mortality in different species of domestic and wild birds in Asia, Europe, and Africa. In our previous study, we demonstrated the susceptibility and potential epidemiologic importance of H5N1 HPAI virus infections in Canada geese. In this study, we investigated the potential of preexposure with North American lineage H3N8, H4N6, and H5N2 low pathogenicity avian influenza (LPAI) viruses to cross-protect Canada geese against a lethal H5N1 HPAI virus challenge. Based on our results, birds that were primed and boosted with an H5N2 LPAI virus survived a lethal H5N1 challenge. In contrast, only two of five birds from the H3N8 group and none of the birds preexposed to H4N6 survived a lethal H5N1 challenge. In vitro cell proliferation assays demonstrated that peripheral blood mononuclear cells collected from each group were no better stimulated by homologous vs. heterologous antigens.

Collaboration


Dive into the James Neufeld's collaboration.

Top Co-Authors

Avatar

Yohannes Berhane

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

John Pasick

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Hana Weingartl

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Helen Kehler

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

John Copps

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Katherine Handel

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Tamiko Hisanaga

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Carissa Embury-Hyatt

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Colleen Cottam-Birt

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Kathleen Hooper-McGrevy

Canadian Food Inspection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge