Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine L. Cook is active.

Publication


Featured researches published by Katherine L. Cook.


Cancer Research | 2012

Endoplasmic Reticulum Stress, the Unfolded Protein Response, Autophagy, and the Integrated Regulation of Breast Cancer Cell Fate

Robert Clarke; Katherine L. Cook; Rong Hu; Caroline O.B. Facey; Iman Tavassoly; Jessica L. Schwartz; William T. Baumann; John J. Tyson; Jianhua Xuan; Yue Wang; Anni Wärri; Ayesha N. Shajahan

How breast cancer cells respond to the stress of endocrine therapies determines whether they will acquire a resistant phenotype or execute a cell-death pathway. After a survival signal is successfully executed, a cell must decide whether it should replicate. How these cell-fate decisions are regulated is unclear, but evidence suggests that the signals that determine these outcomes are highly integrated. Central to the final cell-fate decision is signaling from the unfolded protein response, which can be activated following the sensing of stress within the endoplasmic reticulum. The duration of the response to stress is partly mediated by the duration of inositol-requiring enzyme-1 activation following its release from heat shock protein A5. The resulting signals appear to use several B-cell lymphoma-2 family members to both suppress apoptosis and activate autophagy. Changes in metabolism induced by cellular stress are key components of this regulatory system, and further adaptation of the metabolome is affected in response to stress. Here we describe the unfolded protein response, autophagy, and apoptosis, and how the regulation of these processes is integrated. Central topologic features of the signaling network that integrate cell-fate regulation and decision execution are discussed.


Cancer Research | 2012

Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness.

Katherine L. Cook; Ayesha N. Shajahan; Anni Wärri; Lu Jin; Leena Hilakivi-Clarke; Robert Clarke

While more than 70% of breast cancers express estrogen receptor-α (ER+), endocrine therapies targeting these receptors often fail. The molecular mechanisms that underlie treatment resistance remain unclear. We investigated the potential role of glucose-regulated protein 78 (GRP78) in mediating estrogen resistance. Human breast tumors showed increased GRP78 expression when compared with normal breast tissues. However, GRP78 expression was reduced in ER+ breast tumors compared with HER2-amplifed or triple-negative breast tumors. ER+ antiestrogen-resistant cells and ER+ tumors with an acquired resistant antiestrogen phenotype were both shown to overexpress GRP78, which was not observed in cases of de novo resistance. Knockdown of GRP78 restored antiestrogen sensitivity in resistant cells, and overexpression of GRP78 promoted resistance in sensitive cells. Mechanistically, GRP78 integrated multiple cellular signaling pathways to inhibit apoptosis and stimulate prosurvival autophagy, which was dependent on TSC2/AMPK-mediated mTOR inhibition but not on beclin-1. Inhibition of autophagy prevented GRP78-mediated endocrine resistance, whereas caspase inhibition abrogated the resensitization that resulted from GRP78 loss. Simultaneous knockdown of GRP78 and beclin-1 synergistically restored antiestrogen sensitivity in resistant cells. Together, our findings reveal a novel role for GRP78 in the integration of cellular signaling pathways including the unfolded protein response, apoptosis, and autophagy to determine cell fate in response to antiestrogen therapy.


Expert Review of Anticancer Therapy | 2011

Autophagy and endocrine resistance in breast cancer

Katherine L. Cook; Ayesha N. Shajahan; Robert Clarke

The American Cancer Society estimates that over 200,000 new breast cancer cases are diagnosed annually in the USA alone. Of these cases, the majority are invasive breast cancers and almost 70% are estrogen receptor-α positive. Therapies targeting the estrogen receptor-α are widely applied and include selective estrogen receptor modulators such as tamoxifen, a selective estrogen receptor downregulator such as Fulvestrant (Faslodex; FAS, ICI 182,780), or one of the third-generation aromatase inhibitors including letrozole or anastrozole. While these treatments reduce breast cancer mortality, many estrogen receptor-α-positive tumors eventually recur, highlighting the clinical significance of endocrine therapy resistance. The signaling leading to endocrine therapy resistance is poorly understood; however, preclinical studies have established an important role for autophagy in the acquired resistance phenotype. Autophagy is a cellular degradation process initiated in response to stress or nutrient deprivation, which attempts to restore metabolic homeostasis through the catabolic lysis of aggregated proteins, unfolded/misfolded proteins or damaged subcellular organelles. The duality of autophagy, which can be either pro-survival or pro-death, is well known. However, in the context of endocrine therapy resistance in breast cancer, the inhibition of autophagy can potentiate resensitization of previously antiestrogen resistant breast cancer cells. In this article, we discuss the complex and occasionally contradictory roles of autophagy in cancer and in resistance to endocrine therapies in breast cancer.


Cancer Research | 2010

Angiotensin-(1-7) Reduces Fibrosis in Orthotopic Breast Tumors

Katherine L. Cook; Linda J. Metheny-Barlow; E. Ann Tallant; Patricia E. Gallagher

Angiotensin-(1-7) [Ang-(1-7)] is an endogenous 7-amino acid peptide hormone of the renin-angiotensin system that has antiproliferative properties. In this study, Ang-(1-7) inhibited the growth of cancer-associated fibroblasts (CAF) and reduced fibrosis in the tumor microenvironment. A marked decrease in tumor volume and weight was observed in orthotopic human breast tumors positive for the estrogen receptor (BT-474 or ZR-75-1) and HER2 (BT-474) following Ang-(1-7) administration to athymic mice. Ang-(1-7) concomitantly reduced interstitial fibrosis in association with a significant decrease in collagen I deposition, along with a similar reduction in perivascular fibrosis. In CAFs isolated from orthotopic breast tumors, the heptapeptide markedly attenuated in vitro growth as well as reduced fibronectin, transforming growth factor-β (TGF-β), and extracellular signal-regulated kinase 1/2 kinase activity. An associated increase in the mitogen-activated protein kinase (MAPK) phosphatase DUSP1 following treatment with Ang-(1-7) suggested a potential mechanism by which the heptapeptide reduced MAPK signaling. Consistent with these in vitro observations, immunohistochemical analysis of Ang-(1-7)-treated orthotopic breast tumors revealed reduced TGF-β and increased DUSP1. Together, our findings indicate that Ang-(1-7) targets the tumor microenvironment to inhibit CAF growth and tumor fibrosis.


Clinical Cancer Research | 2014

Hydroxychloroquine Inhibits Autophagy to Potentiate Antiestrogen Responsiveness in ER+ Breast Cancer

Katherine L. Cook; Anni Wärri; David R. Soto-Pantoja; Pamela Ag Clarke; Cruz Mi; Alan Zwart; Robert Clarke

Purpose: Estrogen receptor-α (ERα)-targeted therapies including tamoxifen (TAM) or Faslodex (ICI) are used to treat ER+ breast cancers. Up to 50% of tumors will acquire resistance to these interventions. Autophagy has been implicated as a major driver of antiestrogen resistance. We have explored the ability of chloroquine (CQ), which inhibits autophagy, to affect antiestrogen responsiveness. Experimental Design: TAM-resistant MCF7-RR and ICI-resistant/TAM cross-resistant LCC9 ER+ breast cancer cells were injected into mammary fat pads of female athymic mice and treated with TAM and/or ICI in combination with oral low-dose CQ. Results: We show that CQ can increase antiestrogen responsiveness in MCF7-RR and LCC9 cells and tumors, likely through the inhibition of autophagy. However, the combination of ICI+CQ was less effective than CQ alone in vivo, unlike the TAM+CQ combination. Antiestrogen treatment stimulated angiogenesis in tumors but did not prevent CQ effectiveness. The lower efficacy of ICI+CQ was associated with ICI effects on cell-mediated immunity within the tumor microenvironment. The mouse chemokine KC (CXCL1) and IFNγ were differentially regulated by both TAM and ICI treatments, suggesting a possible effect on macrophage development/activity. Consistent with these observations, TAM+CQ treatment increased tumor CD68+ cells infiltration, whereas ICI and ICI+CQ reduced peripheral tumor macrophage content. Moreover, macrophage elimination of breast cancer target cells in vitro was reduced following exposure to ICI. Conclusion: CQ restores antiestrogen sensitivity to resistant tumors. Moreover, the beneficial combination of TAM+CQ suggests a positive outcome for ongoing neoadjuvant clinical trials using this combination for the treatment of ER+ ductal carcinoma in situ lesions. Clin Cancer Res; 20(12); 3222–32. ©2014 AACR.


Molecular Cancer Therapeutics | 2013

GX15-070 (Obatoclax) Induces Apoptosis and Inhibits Cathepsin D- and L–Mediated Autophagosomal Lysis in Antiestrogen-Resistant Breast Cancer Cells

Jessica L. Schwartz-Roberts; Ayesha N. Shajahan; Katherine L. Cook; Anni Wärri; Mones Abu-Asab; Robert Clarke

In estrogen receptor–positive (ER+) breast cancer cells, BCL2 overexpression contributes to antiestrogen resistance. Direct targeting of the antiapoptotic BCL2 members with GX15-070 (obatoclax), a BH3-mimetic currently in clinical development, is an attractive strategy to overcome antiestrogen resistance in some breast cancers. Recently, GX15-070 has been shown to induce both apoptosis and autophagy, yet the underlying cell death mechanisms have yet to be elucidated. Here, we show that GX15-070 is more effective in reducing the cell density of antiestrogen-resistant breast cancer cells versus sensitive cells and that this increased sensitivity of resistant cells to GX15-070 correlates with an accumulation of autophagic vacuoles. Formation of autophagosomes in GX15-070-treated cells was verified by changes in expression of the lipidation of microtubule-associated protein-1 light chain-3 and both confocal and transmission electron microscopy. While GX15-070 treatment promotes autophagic vacuole and autolysosome formation, p62/SQSTM1, a marker for autophagic degradation, levels accumulate. Moreover, GX15-070 exposure leads to a reduction in cathepsin D (CTSD) and L (CTSL1) protein expression that would otherwise digest autolysosome cargo. Thus, GX15-070 has dual roles in promoting cell death: (i) directly inhibiting antiapoptotic BCL2 family members, thereby inducing apoptosis; and (ii) inhibiting downstream CTSD and CTSL1 protein expression to limit the ability of cells to use degraded material to fuel cellular metabolism and restore homeostasis. Our data highlight a new mechanism of GX15-070-induced cell death that could be used to design novel therapeutic interventions for antiestrogen resistant breast cancer. Mol Cancer Ther; 12(4); 448–59. ©2013 AACR.


Cell & Bioscience | 2014

Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of parkin-associated mitophagy

Katherine L. Cook; David R. Soto-Pantoja; Mones Abu-Asab; Pamela Ag Clarke; David D. Roberts; Robert Clarke

BackgroundAutophagy (macroautophagy), a cellular process of “self-eating”, segregates damaged/aged organelles into vesicles, fuses with lysosomes, and enables recycling of the digested materials. The precise origin(s) of the autophagosome membrane is unclear and remains a critical but unanswered question. Endoplasmic reticulum, mitochondria, Golgi complex, and the plasma membrane have been proposed as the source of autophagosomal membranes.FindingsUsing electron microscopy, immunogold labeling techniques, confocal microscopy, and flow cytometry we show that mitochondria can directly donate their membrane material to form autophagosomes. We expand upon earlier studies to show that mitochondria donate their membranes to form autophagosomes during basal and drug-induced autophagy. Moreover, electron microscopy and immunogold labeling studies show the first physical evidence of mitochondria forming continuous structures with LC3-labeled autophagosomes. The mitochondria forming these structures also stain positive for parkin, indicating that these mitochondrial-formed autophagosomes represent a novel mechanism of parkin-associated mitophagy.ConclusionsWith the on-going debate regarding autophagosomal membrane origin, this report demonstrates that mitochondria can donate membrane materials to form autophagosomes. These structures may also represent a novel form of mitophagy where the mitochondria contribute to the formation of autophagosomes. This novel form of parkin-associated mitophagy may be a more efficient bio-energetic process compared with de novo biosynthesis of a new membrane, particularly if the membrane is obtained, at least partly, from the organelle being targeted for later degradation in the mature autolysosome.


Current Cancer Drug Targets | 2011

Angiotensin peptides and lung cancer.

Patricia E. Gallagher; Katherine L. Cook; David R. Soto-Pantoja; Jyotsana Menon; E Tallant

Lung cancer is a leading cause of death in both men and women, with over 1,000,000 new cases diagnosed worldwide annually and a 5-year survival rate of only 14%, a figure that has improved little in the past thirty years. This poor prognosis suggests a need for novel approaches for the treatment and prevention of lung cancer. The renin-angiotensin system is an established, primary regulator of blood pressure, homeostasis, and natriuresis; however, compelling evidence indicates that the angiotensin peptides also play a role in cell proliferation and inflammation. Angiotensin II is a vasoconstrictor, a mitogen, and an angiogenic factor, while angiotensin-(1-7) has vasodilator, anti-proliferative, and anti-angiogenic properties. This review focuses on studies examining the renin-angiotensin system in pulmonary cancers and whether clinical intervention of this pathway may serve as an effective chemotherapeutic and/or chemopreventive modality for lung cancer.


The FASEB Journal | 2014

Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death

Katherine L. Cook; Pamela Ag Clarke; Jignesh Parmar; Rong Hu; Jessica L. Schwartz-Roberts; Mones Abu-Asab; Anni Wärri; William T. Baumann; Robert Clarke

Approximately 70% of all newly diagnosed breast cancers express estrogen receptor (ER)‐α. Although inhibiting ER action using targeted therapies such as fulvestrant (ICI) is often effective, later emergence of antiestrogen resistance limits clinical use. We used antiestrogen‐sensitive and ‐resistant cells to determine the effect of antiestrogens/ERα on regulating autophagy and unfolded protein response (UPR) signaling. Knockdown of ERα significantly increased the sensitivity of LCC1 cells (sensitive) and also resensitized LCC9 cells (resistant) to antiestrogen drugs. Interestingly, ERα knockdown, but not ICI, reduced nuclear factor (erythroid‐derived 2)‐like (NRF)‐2 (UPR‐induced antioxidant protein) and increased cytosolic kelch‐like ECH‐associated protein (KEAP)‐1 (NRF2 inhibitor), consistent with the observed increase in ROS production. Furthermore, autophagy induction by antiestrogens was prosurvival but did not prevent ERα knockdown‐mediated death. We built a novel mathematical model to elucidate the interactions among UPR, autophagy, ER signaling, and ROS regulation of breast cancer cell survival. The experimentally validated mathematical model explains the counterintuitive result that knocking down the main target of ICI (ERα) increased the effectiveness of ICI. Specifically, the model indicated that ERα is no longer present in excess and that the effect on proliferation from further reductions in its level by ICI cannot be compensated for by increased autophagy. The stimulation of signaling that can confer resistance suggests that combining autophagy or UPR inhibitors with antiestrogens would reduce the development of resistance in some breast cancers.—Cook, K. L., Clarke, P. A. G., Parmar, J., Hu, R., Schwartz‐Roberts, J. L., Abu‐Asab, M., Wärri, A., Baumann, W. T., Clarke, R. Knockdown of estrogen receptor‐α induces autophagy and inhibits antiestrogen‐mediated unfolded protein response activation, promoting ROS‐induced breast cancer cell death. FASEB J. 28, 3891‐3905 (2014). www.fasebj.org


Molecular Cancer | 2014

MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer

Ayesha N. Shajahan-Haq; Katherine L. Cook; Jessica L. Schwartz-Roberts; Ahreej E. Eltayeb; Diane M. Demas; Anni Wärri; Caroline O.B. Facey; Leena Hilakivi-Clarke; Robert Clarke

BackgroundAbout 70% of all breast cancers are estrogen receptor alpha positive (ER+) and are treated with antiestrogens. However, 50% of ER + tumors develop resistance to these drugs (endocrine resistance). In endocrine resistant cells, an adaptive pathway called the unfolded protein response (UPR) is elevated that allows cells to tolerate stress more efficiently than in sensitive cells. While the precise mechanism remains unclear, the UPR can trigger both pro-survival and pro-death outcomes that depend on the nature and magnitude of the stress. In this study, we identified MYC, an oncoprotein that is upregulated in endocrine resistant breast cancer, as a regulator of the UPR in glucose-deprived conditions.MethodsER+ human breast cancer cell lines (LCC1, LCC1, LY2 and LCC9) and rat mammary tumors were used to confirm upregulation of MYC in endocrine resistance. To evaluate functional relevance of proteins, siRNA-mediated inhibition or small molecule inhibitors were used. Cell density/number was evaluated with crystal violet assay; cell cycle and apoptosis were measured by flow cytometry. Relative quantification of glutamine metabolites were determined by mass spectrometry. Signaling molecules of the UPR, apoptosis or autophagy pathways were investigated by western blotting.ResultsIncreased MYC function in resistant cells correlated with increased dependency on glutamine and glucose for survival. Inhibition of MYC reduced cell growth and uptake of both glucose and glutamine in resistant cells. Interestingly, in glucose-deprived conditions, glutamine induced apoptosis and necrosis, arrested autophagy, and triggered the unfolded protein response (UPR) though GRP78-IRE1α with two possible outcomes: (i) inhibition of cell growth by JNK activation in most cells and, (ii) promotion of cell growth by spliced XBP1 in the minority of cells. These disparate effects are regulated, at different signaling junctions, by MYC more robustly in resistant cells.ConclusionsEndocrine resistant cells overexpress MYC and are better adapted to withstand periods of glucose deprivation and can use glutamine in the short term to maintain adequate metabolism to support cell survival. Our findings reveal a unique role for MYC in regulating cell fate through the UPR, and suggest that targeting glutamine metabolism may be a novel strategy in endocrine resistant breast cancer.

Collaboration


Dive into the Katherine L. Cook's collaboration.

Top Co-Authors

Avatar

Robert Clarke

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Soto-Pantoja

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Hu

Georgetown University

View shared research outputs
Top Co-Authors

Avatar

Lu Jin

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge