Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine R. Kozak is active.

Publication


Featured researches published by Katherine R. Kozak.


Bioconjugate Chemistry | 2011

Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats.

C. Andrew Boswell; Eduardo E. Mundo; Crystal Zhang; Daniela Bumbaca; Nicole R. Valle; Katherine R. Kozak; Aimee Fourie; Josefa Chuh; Neelima Koppada; Ola Saad; Herman S. Gill; Ben-Quan Shen; Bonnee Rubinfeld; Jay Tibbitts; Surinder Kaur; Frank-Peter Theil; Paul J. Fielder; Leslie A. Khawli; Kedan Lin

Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target. To assess the role of ADC composition in PK, we evaluated plasma and tissue PK profiles in rats, following a single dose, of a humanized anti-STEAP1 IgG1 antibody, a thio-anti-STEAP1 (ThioMab) variant, and two corresponding thioether-linked monomethylauristatin E (MMAE) drug conjugates modified through interchain disulfide cysteine residues (ADC) and engineered cysteines (TDC), respectively. Plasma PK of total antibody measured by enzyme-linked immunosorbent assay (ELISA) revealed ∼45% faster clearance for the ADC relative to the parent antibody, but no apparent difference in clearance between the TDC and unconjugated parent ThioMab. Total antibody clearances of the two unconjugated antibodies were similar, suggesting minimal effects on PK from cysteine mutation. An ELISA specific for MMAE-conjugated antibody indicated that the ADC cleared more rapidly than the TDC, but total antibody ELISA showed comparable clearance for the two drug conjugates. Furthermore, consistent with relative drug load, the ADC had a greater magnitude of drug deconjugation than the TDC in terms of free plasma MMAE levels. Antibody conjugation had a noticeable, albeit minor, impact on tissue distribution with a general trend toward increased hepatic uptake and reduced levels in other highly vascularized organs. Liver uptakes of ADC and TDC at 5 days postinjection were 2-fold and 1.3-fold higher, respectively, relative to the unmodified antibodies. Taken together, these results indicate that the degree of overall structural modification in anti-STEAP1-MMAE conjugates has a corresponding level of impact on both PK and tissue distribution.


Molecular Cancer Therapeutics | 2012

Effects of Anti-VEGF on Pharmacokinetics, Biodistribution, and Tumor Penetration of Trastuzumab in a Preclinical Breast Cancer Model

Cinthia V. Pastuskovas; Eduardo E. Mundo; Simon Williams; Tapan K Nayak; Jason Ho; Sheila Ulufatu; Suzanna Clark; Sarajane Ross; Eric Cheng; Kathryn Parsons-Reponte; Gary Cain; Marjie Van Hoy; Nicholas Majidy; Sheila Bheddah; Josefa Chuh; Katherine R. Kozak; Nicholas Lewin-Koh; Peter Nauka; Daniela Bumbaca; Mark X. Sliwkowski; Jay Tibbitts; Frank-Peter Theil; Paul J. Fielder; Leslie A. Khawli; C. Andrew Boswell

Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography–X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes. Mol Cancer Ther; 11(3); 752–62. ©2012 AACR.


Journal of Medicinal Chemistry | 2014

Site-Specific Trastuzumab Maytansinoid Antibody–Drug Conjugates with Improved Therapeutic Activity through Linker and Antibody Engineering

Thomas H. Pillow; Janet Tien; Kathryn Parsons-Reponte; Sunil Bhakta; Hao Li; Leanna Staben; Guangmin Li; Josefa Chuh; Aimee Fourie-O’Donohue; Martine Darwish; Victor Yip; Luna Liu; Douglas D. Leipold; Dian Su; Elmer Wu; Susan D. Spencer; Ben-Quan Shen; Keyang Xu; Katherine R. Kozak; Helga Raab; Richard Vandlen; Gail Lewis Phillips; Richard H. Scheller; Paul Polakis; Mark X. Sliwkowski; John A. Flygare; Jagath R. Junutula

Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.


Molecular Cancer Therapeutics | 2013

DCDT2980S, an Anti-CD22-Monomethyl Auristatin E Antibody–Drug Conjugate, Is a Potential Treatment for Non-Hodgkin Lymphoma

Dongwei Li; Kirsten Achilles Poon; Shang-Fan Yu; Randall Dere; MaryAnn Go; Jeffrey Lau; Bing Zheng; Kristi Elkins; Dimitry M. Danilenko; Katherine R. Kozak; Pamela Chan; Josefa Chuh; Xiaoyan Shi; Denise Nazzal; Franklin Fuh; Jacqueline McBride; Vanitha Ramakrishnan; Ruth de Tute; Andy C. Rawstron; Andrew Jack; Rong Deng; Yu-Waye Chu; David Dornan; Marna Williams; William Ho; Allen Ebens; Saileta Prabhu; Andrew G. Polson

Antibody–drug conjugates (ADC), potent cytotoxic drugs linked to antibodies via chemical linkers, allow specific targeting of drugs to neoplastic cells. We have used this technology to develop the ADC DCDT2980S that targets CD22, an antigen with expression limited to B cells and the vast majority of non-Hodgkin lymphomas (NHL). DCDT2980S consists of a humanized anti-CD22 monoclonal IgG1 antibody with a potent microtubule-disrupting agent, monomethyl auristatin E (MMAE), linked to the reduced cysteines of the antibody via a protease cleavable linker, maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl (MC-vc-PAB). We describe the efficacy, safety, and pharmacokinetics of DCDT2980S in animal models to assess its potential as a therapeutic for the treatment of B-cell malignancies. We did not find a strong correlation between in vitro or in vivo efficacy and CD22 surface expression, nor a correlation of sensitivity to free drug and in vitro potency. We show that DCDT2980S was capable of inducing complete tumor regression in xenograft mouse models of NHL and can be more effective than rituximab plus combination chemotherapy at drug exposures that were well tolerated in cynomolgus monkeys. These results suggest that DCDT2980S has an efficacy, safety, and pharmacokinetics profile that support potential treatment of NHL. Mol Cancer Ther; 12(7); 1255–65. ©2013 AACR.


British Journal of Pharmacology | 2013

An integrated approach to identify normal tissue expression of targets for antibody‐drug conjugates: case study of TENB2

C. Andrew Boswell; Eduardo E. Mundo; Ron Firestein; Crystal Zhang; Weiguang Mao; Herman S. Gill; Cynthia Young; Nina Ljumanovic; Shannon Stainton; Sheila Ulufatu; Aimee Fourie; Katherine R. Kozak; Reina N. Fuji; Paul Polakis; Leslie A. Khawli; Kedan Lin

The success of antibody‐drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target‐mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen‐independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target‐mediated clearance.


Nature Chemistry | 2016

Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody–drug conjugates

Leanna Staben; Stefan G. Koenig; Sophie M. Lehar; Richard Vandlen; Donglu Zhang; Josefa Chuh; Shang-Fan Yu; Carl Ng; Jun Guo; Yanzhou Liu; Aimee Fourie-O'Donohue; MaryAnn Go; Xin Linghu; Nathaniel L. Segraves; Tao Wang; Jinhua Chen; Binqing Wei; Gail Lewis Phillips; Keyang Xu; Katherine R. Kozak; Sanjeev Mariathasan; John A. Flygare; Thomas H. Pillow

The reversible attachment of a small-molecule drug to a carrier for targeted delivery can improve pharmacokinetics and the therapeutic index. Previous studies have reported the delivery of molecules that contain primary and secondary amines via an amide or carbamate bond; however, the ability to employ tertiary-amine-containing bioactive molecules has been elusive. Here we describe a bioreversible linkage based on a quaternary ammonium that can be used to connect a broad array of tertiary and heteroaryl amines to a carrier protein. Using a concise, protecting-group-free synthesis we demonstrate the chemoselective modification of 12 complex molecules that contain a range of reactive functional groups. We also show the utility of this connection with both protease-cleavable and reductively cleavable antibody-drug conjugates that were effective and stable in vitro and in vivo. Studies with a tertiary-amine-containing antibiotic show that the resulting antibody-antibiotic conjugate provided appropriate stability and release characteristics and led to an unexpected improvement in activity over the conjugates previously connected via a carbamate.


The Journal of Nuclear Medicine | 2012

Differential Effects of Predosing on Tumor and Tissue Uptake of an 111In-Labeled Anti-TENB2 Antibody–Drug Conjugate

C. Andrew Boswell; Eduardo E. Mundo; Crystal Zhang; Shannon Stainton; Shang-Fan Yu; Jennifer A. Lacap; Weiguang Mao; Katherine R. Kozak; Aimee Fourie; Paul Polakis; Leslie A. Khawli; Kedan Lin

TENB2, also known as tomoregulin or transmembrane protein with epidermal growth factor–like and 2 follistatin-like domains, is a transmembrane proteoglycan overexpressed in human prostate tumors. This protein is a promising target for antimitotic monomethyl auristatin E (MMAE)–based antibody–drug conjugate (ADC) therapy. Nonlinear pharmacokinetics in normal mice suggested that antigen expression in normal tissues may contribute to targeted mediated disposition. We evaluated a predosing strategy with unconjugated antibody to block ADC uptake in target-expressing tissues in a mouse model while striving to preserve tumor uptake and efficacy. Methods: Unconjugated, unlabeled antibody was preadministered to mice bearing the TENB2-expressing human prostate explant model, LuCaP 77, followed by a single administration of 111In-labeled anti-TENB2-MMAE for biodistribution and SPECT/CT studies. A tumor-growth-inhibition study was conducted to determine the pharmacodynamic consequences of predosing. Results: Preadministration of anti-TENB2 at 1 mg/kg significantly increased blood exposure of the radiolabeled ADC and reduced intestinal, hepatic, and splenic uptake while not affecting tumor accretion. Similar tumor-to-heart ratios were measured by SPECT/CT at 24 h with and without the predose. Consistent with this, the preadministration of 0.75 mg/kg did not interfere with efficacy in a tumor-growth study dosed at 0.75 mg or 2.5 mg of ADC per kilogram. Conclusion: Overall, the potential to mask peripheral, nontumor antigen uptake while preserving tumor uptake and efficacy could ameliorate toxicity and may significantly affect future dosing strategies for ADCs.


Pharmaceutical Research | 2015

Mechanism-Based Pharmacokinetic/Pharmacodynamic Model for THIOMAB™ Drug Conjugates

Siddharth Sukumaran; Kapil Gadkar; Crystal Zhang; Sunil Bhakta; Luna Liu; Keyang Xu; Helga Raab; Shang-Fan Yu; Elaine Mai; Aimee Fourie-O’Donohue; Katherine R. Kozak; Saroja Ramanujan; Jagath R. Junutula; Kedan Lin

ABSTRACTPurposeTHIOMAB™ drug conjugates (TDCs) with engineered cysteine residues allow site-specific drug conjugation and defined Drug-to-Antibody Ratios (DAR). In order to help elucidate the impact of drug-loading, conjugation site, and subsequent deconjugation on pharmacokinetics and efficacy, we have developed an integrated mathematical model to mechanistically characterize pharmacokinetic behavior and preclinical efficacy of MMAE conjugated TDCs with different DARs. General applicability of the model structure was evaluated with two different TDCs.MethodPharmacokinetics studies were conducted for unconjugated antibody and purified TDCs with DAR-1, 2 and 4 for trastuzumab TDC and Anti-STEAP1 TDC in mice. Total antibody concentrations and individual DAR fractions were measured. Efficacy studies were performed in tumor-bearing mice.ResultsAn integrated model consisting of distinct DAR species (DAR0-4), each described by a two-compartment model was able to capture the experimental data well. Time series measurements of each Individual DAR species allowed for the incorporation of site-specific drug loss through deconjugation and the results suggest a higher deconjugation rate from heavy chain site HC-A114C than the light chain site LC-V205C. Total antibody concentrations showed multi-exponential decline, with a higher clearance associated with higher DAR species. The experimentally observed effects of TDC on tumor growth kinetics were successfully described by linking pharmacokinetic profiles to DAR-dependent killing of tumor cells.ConclusionResults from the integrated model evaluated with two different TDCs highlight the impact of DAR and site of conjugation on pharmacokinetics and efficacy. The model can be used to guide future drug optimization and in-vivo studies.


Molecular Cancer Therapeutics | 2014

An Antimesothelin-Monomethyl Auristatin E Conjugate with Potent Antitumor Activity in Ovarian, Pancreatic, and Mesothelioma Models

Suzie J. Scales; Nidhi Gupta; Glenn Pacheco; Ron Firestein; Dorothy French; Hartmut Koeppen; Linda Rangell; Vivian Barry-Hamilton; Elizabeth Luis; Josefa Chuh; Yin Zhang; Gladys Ingle; Aimee Fourie-O'Donohue; Katherine R. Kozak; Sarajane Ross; Mark S. Dennis; Susan D. Spencer

Mesothelin (MSLN) is an attractive target for antibody–drug conjugate therapy because it is highly expressed in various epithelial cancers, with normal expression limited to nondividing mesothelia. We generated novel antimesothelin antibodies and conjugated an internalizing one (7D9) to the microtubule-disrupting drugs monomethyl auristatin E (MMAE) and MMAF, finding the most effective to be MMAE with a lysosomal protease-cleavable valine–citrulline linker. The humanized (h7D9.v3) version, αMSLN-MMAE, specifically targeted mesothelin-expressing cells and inhibited their proliferation with an IC50 of 0.3 nmol/L. Because the antitumor activity of an antimesothelin immunotoxin (SS1P) in transfected mesothelin models did not translate to the clinic, we carefully selected in vivo efficacy models endogenously expressing clinically relevant levels of mesothelin, after scoring mesothelin levels in ovarian, pancreatic, and mesothelioma tumors by immunohistochemistry. We found that endogenous mesothelin in cancer cells is upregulated in vivo and identified two suitable xenograft models for each of these three indications. A single dose of αMSLN-MMAE profoundly inhibited or regressed tumor growth in a dose-dependent manner in all six models, including two patient-derived tumor xenografts. The robust and durable efficacy of αMSLN-MMAE in preclinical models of ovarian, mesothelioma, and pancreatic cancers justifies the ongoing phase I clinical trial. Mol Cancer Ther; 13(11); 2630–40. ©2014 AACR.


Bioconjugate Chemistry | 2018

High-Throughput Cysteine Scanning To Identify Stable Antibody Conjugation Sites for Maleimide- and Disulfide-Based Linkers

Rachana Ohri; Sunil Bhakta; Aimee Fourie-O’Donohue; Josefa dela Cruz-Chuh; Siao Ping Tsai; Ryan Cook; Binqing Wei; Carl Ng; Athena W. Wong; Aaron B. Bos; Farzam Farahi; Jiten Bhakta; Thomas H. Pillow; Helga Raab; Richard Vandlen; Paul Polakis; Yichin Liu; Hans Erickson; Jagath R. Junutula; Katherine R. Kozak

THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.

Collaboration


Dive into the Katherine R. Kozak's collaboration.

Researchain Logo
Decentralizing Knowledge